Direct Photolysis Reaction Library

 

Version 1.3 of the Direct Photolysis Reaction Library contains 155 reaction schemes:

 

Symbols and Notes. 6

Reaction Schemes. 7

Photorearrangement. 7

·         1-Naphthoxy Photorearrangement (C2). 7

·         1-Naphthoxy Photorearrangement (C4). 8

·         2-Naphthoxy Photorearrangement (C1). 9

·         2-Nitrobenzaldehyde Photorearrangement. 10

·         Benzyl Phenyl Ether Photorearrangement (o). 11

·         Benzyl Phenyl Ether Photorearrangement (p). 12

·         Enone Steroid Photorearrangement to Cyclopentenone. 13

·         Enone Steroid Photorearrangement to Lumiketone. 14

·         O-aryl Carbamate Photorearrangement (o). 15

·         O-aryl Carbamate Photorearrangement (p). 16

·         Organothiophosphorus Ester Photochemical Oxygen Transfer. 17

·         Organothiophosphorus Ester Photorearrangement. 18

·         Phenoxyphenol Dehalogenative Photorearrangement. 19

Photodissociation. 20

·         Aromatic Ketone Norrish II Photocleavage (C1_C4). 20

·         Aminobenzophenone Photochemical N-dealkylation. 21

·         Benzyl Photodeamination to Alcohol 22

·         Benzyl Photodeamination to Carbonyl 23

·         Benzyl Thiocarbamate Photocleavage to Carbonyl 25

·         Cyclohexanedione Oxime N-O Photocleavage. 26

·         Diazepam Ring Photocleavage. 28

·         Dihydrophenanthrene Benzyl Photodealkylation. 30

·         Dihydrophenanthrene Benzyl Oxidative Photodealkylation. 31

·         Dinitroaniline Photochemical N-dealkylation. 32

·         Fluoroquinolone Ethylenediamine Photochemical N-dealkylation. 35

·         Fluoroquinolone Photochemical N-dealkylation. 37

·         Fluoroquinolone Piperazine Photochemical Bis N-dealkylation. 39

·         Imidazolinone Ring Photocleavage to Aldehyde. 41

·         Imidazolinone Ring Photocleavage to Amide. 43

·         Imidazolinone Ring Photocleavage to Amidine. 45

·         Imidazolinone Ring Photocleavage to Carboxylic Acid. 47

·         Nitroenamine Photocleavage. 49

·         Nitroenamine Photocleavage to Carbonyl 50

·         Nitrosamine N-C Photocleavage. 51

·         p-Aminobenzoic Acid Photochemical N-dealkylation. 52

·         Phenoxyphenol Ether Photocleavage. 54

·         Phenylurea Photochemical N-dealkylation. 56

·         Phenylurea Photochemical N-demethoxylation. 58

·         Phenylurea N-formyl Photocleavage. 59

·         Pyridinium Photochemical N-dealkylation. 60

·         s-Triazine Side Chain Photochemical N-dealkylation. 62

·         Sulfonamide N-C Photocleavage (6-5). 66

·         Tetracycline Photochemical N-dealkylation. 68

Photoelimination. 69

·         1_2_4-Triazine-5-one Photochemical N-deamination. 69

·         Aromatic Acetic Acid Photodecarboxylation. 70

·         Aromatic Acetic Acid Photodecarboxylation to Alcohol 72

·         Aromatic Acetic Acid Photodecarboxylation to Carbonyl 74

·         Aromatic Carboxylic Acid Photodecarboxylation. 77

·         Aromatic Carboxylic Acid Photodecarboxylation to Alcohol 81

·         Benzotriazole Photodenitrogenation. 83

·         Benzotriazole Photodenitrogenation to Phenol (o). 85

·         Cephem Photodecarboxylation. 87

·         Cyanohydrin Cyano Photoelimination to Aldehyde. 89

·         Fipronil Sulfoxide Photoextrusion. 90

·         Imidazolinone Amide Photoelimination. 91

·         Imidazolinone Photodecarbonylation. 92

·         Nitroguanidine Photochemical N-denitration. 94

·         Nitrosamine N-N Photocleavage. 95

·         Phenoxyacetic Acid Photodecarboxylation. 96

·         Phenoxyacetic Acid Photodecarboxylation to Carbonyl 97

·         Pyrrolinone Photodecarbonylation. 99

·         RDX Photochemical N-denitration to Imine. 100

·         Sulfonamide SO2 Extrusion Photorearrangement (6-6). 101

Photocyclization. 103

·         Acetanilide Dehalogenative Photocyclization to Pyrrolinone. 103

·         Acetanilide O-dealkyl Dehalogenative Photocyclization to Morpholinone. 104

·         Altrenogest Photocycloaddition. 106

·         Aminobenzophenone Photocyclization to Acridinone. 107

·         Anthranilic Diamide Dehalogenative Photocyclization to Oxazine. 108

·         Aromatic Ketone Norrish II Photocyclization (C1_C4). 110

·         beta-Triketone Dehalogenative Photocyclization to Pyran. 111

·         Diarylethene Photocyclization to Phenanthrene. 112

·         Diarylethene Photocyclization to Phenanthrene (E isomer). 114

·         Dinitroaniline Photocyclization to Benzimidazole (NOHOH). 116

·         Dinitroaniline Photocyclization to Benzimidazole (NOHOH to NO). 116

·         Dinitroaniline Photocyclization to Benzimidazole (NO to N). 116

·         Diphenylamine Photocyclization to Carbazole. 121

·         Diphenylamine Dehalogenative Photocyclization to Carbazole. 122

·         Fluoroquinolone Defluorinative Photocyclization. 123

·         Lamotrigine Photocyclization to Carbazole. 124

·         Lamotrigine Dehalogenative Photocyclization to Carbazole. 125

·         o-Vinylbiphenyl Photocyclization to Dihydrophenanthrene. 126

·         Phenoxyphenol Dehalogenative Photocyclization to Dioxin. 128

Photochemical Ring Contraction. 130

·         Zepine Photochemical Ring Contraction to Acridine. 130

Photohydrolysis. 131

·         Aromatic Amine Photohydrolysis. 131

·         Aromatic Carbamate Photohydrolysis. 133

·         Aromatic Ether Photohydrolysis. 135

·         Aromatic Halide Photohydrolysis. 140

·         Aromatic Nitro Photohydrolysis. 147

·         Aromatic Sulfonate Photohydrolysis. 150

·         Benzoylphenylurea Amide Photohydrolysis. 152

·         Benzoylphenylurea Urea Photohydrolysis. 153

·         beta-Triketone alpha Photocleavage to Carboxylic Acid. 155

·         Diphenyl Ether Photohydrolysis. 157

·         Fluoroquinolone Fluoride Photohydrolysis. 160

·         N-aryl Amide Photohydrolysis. 162

·         Nitrofuran Imine Photohydrolysis. 165

·         Nitroguanidine Imine Photohydrolysis. 167

·         Nitroguanidine Nitro Photohydrolysis. 169

·         Organophosphorus Ester Photohydrolysis. 170

·         Pyrethroid Carboxylic Acid Ester Photohydrolysis. 173

·         Pyrrolinone Halide Photohydrolysis. 174

·         Sulfonamide Photohydrolysis. 175

·         Sulfonamide S-C Photohydrolysis. 179

·         Sulfonylurea Photohydrolysis. 182

·         Sulfonylurea S-C Photohydrolysis. 184

·         Sulfonylurea S-N Photohydrolysis. 186

·         Trifluoromethyl Photohydrolysis. 188

Photohydration. 192

·         Diarylethene Photohydration. 192

·         Dienone Steroid Photohydration (C5). 194

·         Dienone Steroid Photohydration (C9). 196

·         Enone Steroid Photohydration and Photorearrangement to Spiro. 197

·         Trienone Steroid Photohydration (C10). 198

·         Trienone Steroid Photohydration (C12). 199

Photooxidation. 201

·         1_2-Naphthoquinone Photohydroxylation (C4). 201

·         1_4-Naphthoquinone Photohydroxylation (C5). 202

·         1_4-Naphthoquinone Photohydroxylation (C6). 203

·         1-Hydroxypyrene Photooxidation to Quinone (C1_C6). 204

·         1-Hydroxypyrene Photooxidation to Quinone (C1_C8). 205

·         1-Naphthol Photooxidation to 1_2-Benzoquinone. 206

·         1-Naphthol Photooxidation to 1_4-Benzoquinone. 207

·         1-Naphthoxy Oxidative Photocleavage to 1_4-Benzoquinone. 208

·         Anthracene Photooxidation to Endoperoxide. 209

·         Aromatic Methyl Photooxidation to Carboxylic Acid. 210

·         Aromatic Nitroso Photooxidation. 211

·         Aromatic Sulfoxide Photooxidation. 213

·         Aromatic Thioether Photooxidation. 215

·         Benzaldehyde Photooxidation to Carboxylic Acid. 217

·         Benzyl Thio Photooxidation to Sulfoxide. 219

·         beta-Triketone alpha Photohydroxylation (Dienol). 220

·         beta-Triketone alpha Photohydroxylation (Keto) 221

·         beta-Triketone Photohydroxylation (Enol). 222

·         beta-Triketone Photohydroxylation (Keto) 223

·         Carbamazepine Photoepoxidation. 224

·         Diarylethene Photooxidation. 225

·         Dihydrooxathiine Anilide Photooxidation to Sulfoxide. 227

·         Dihydropyridine Photooxidation to Pyridine. 228

·         Octahydrophenanthrene Benzyl Photohydroxylation. 229

·         Octahydrophenanthrene Benzyl Photooxidation to Ketone. 231

·         Organothiophosphorus Ester Photooxidation to Oxon. 232

·         Phenylurea N-methyl Photooxidation to N-formyl 234

·         Pyrene Aromatic Photohydroxylation. 235

·         s-Triazine Side Chain N-alkyl Photooxidation to Carbonyl 236

·         s-Triazine Side Chain N-isopropyl Photooxidation to Ketone. 237

·         Trienone Steroid Photooxidation to Dialdehyde. 238

·         Trifluoroacetic Acid Photoformation. 239

Photoreduction. 240

·         Aromatic Photohydrodehalogenation. 240

·         Dinitroaniline Nitro Photoreduction. 243

·         Fluoroquinolone Photohydrodefluorination. 245

Secondary Dark Reaction. 247

·         12-OH Steroid Dehydration to Trienone. 247

·         5-OH Steroid Dehydration to Dienone. 249

·         Aldehyde Oxidation to Carboxylic Acid. 251

·         C-NCO Hydrolysis. 253

·         C-NNO2 Hydrolysis. 254

·         Dehydration of Geminal Diols. 255

·         Hydroxy Enal Tautomerization. 256

·         Nitro Amidine Hydrolysis. 257

Rank Assignment. 258

Rank Levels. 258

Rank of Individual Reaction Schemes. 258

 


 

Symbols and Notes

The reaction schemes are encoded using the notation and structural query features (L, ~L, L1-X, etc) from ChemAxon’s Marvin tools. Definitions of some common symbols used in the reaction schemes are provided below:

·         L[a1;a2;…] is a list of possible atoms (a1, a2, …) that can occupy the position within the fragment

·         ~L![a1;a2;…] is a list of atoms (a1, a2, …) that cannot occupy the position within the fragment

·         A is any atom except hydrogen

·         AH is any atom including hydrogen

·         X is any halogen atom (i.e. F, Cl, Br, X)

·         (A) indicates an aliphatic carbon atom

·         (a) indicates an aromatic carbon atom

·         (L1-N) indicates a string of atoms (acyclic or cyclic) of length of N

·         (X#) indicates # connections (= substituents including hydrogen) are attached to the atom

·         (H#) indicates at least # hydrogens are attached to the atom

·         (s#) indicates # non-hydrogen substituents are attached to the atom

·         (s*) indicates the non-hydrogen substituent count is as drawn for the atom

·         (R0) indicates the atom is not part of a ring

·         (R) indicate the atom is part of a ring

·           is a single bond

·          is a double bond

·          is an aromatic bond unless otherwise stated underneath the reaction scheme to represent a single/aromatic or a double/aromatic bond

·           is a single or double bond

·          is a double cis or trans bond

The associated reactivity, selectivity, and exclusion rules are encoded using ChemAxon's Chemical Terms Language. Definitions of the Chemical Terms functions used in the reaction schemes can be referred from ChemAxon’s documentation: https://docs.chemaxon.com/display/docs/Available+Functions (accessed on Apr 29, 2020).

Other Notes:

·         The reference from European Food Safety Authority (EFSA) reports can be found on the official website and was not referred individually: http://www.efsa.europa.eu/en/publications (accessed on Apr 29, 2020).

·         “XXX photo-product” as the compound name means that XXX was the original compound photolyzed in the reference and the XXX photo-product and the subsequent products were detected.

Reaction Schemes

Photorearrangement

1-Naphthoxy Photorearrangement (C2)

Scheme:

An exclusion rule is included to differentiate this scheme from “O-aryl Carbamate Photorearrangement (o)” by specifying that reactant atom 11 is not part of a carbamate functional group.

Examples:

Napropamide (Aguer et al. 1998, Chang et al. 1991) (EFSA)

 

 

References:

Aguer, J.P., Boule, P., Bonnemoy, F. and Chezal, J.M. 1998. Phototransformation of napropamide [n,n-diethyl-2-(1-naphthyloxy)propionamide] in aqueous solution: Influence on the toxicity of solutions. Pestic. Sci. 54(3), 253-257.

Chang, L.L., Giang, B.Y., Lee, K.S. and Tseng, C.K. 1991. Aqueous photolysis of napropamide. J. Agric. Food Chem. 39(3), 617-621.

 


1-Naphthoxy Photorearrangement (C4)

Scheme:

An exclusion rule is included to differentiate the scheme from “O-aryl Carbamate Photorearrangment (p)” by specifying that reactant atom 11 is not part of a carbamate functional group.

Examples:

Napropamide (Aguer et al. 1998, Chang et al. 1991) (EFSA)

 

Reference:

Aguer, J.P., Boule, P., Bonnemoy, F. and Chezal, J.M. 1998. Phototransformation of napropamide [n,n-diethyl-2-(1-naphthyloxy)propionamide] in aqueous solution: Influence on the toxicity of solutions. Pestic. Sci. 54(3), 253-257.

Chang, L.L., Giang, B.Y., Lee, K.S. and Tseng, C.K. 1991. Aqueous photolysis of napropamide. J. Agric. Food Chem. 39(3), 617-621.

 


2-Naphthoxy Photorearrangement (C1)

Scheme:

An exclusion rule is included to differentiate this scheme from “O-aryl Carbamate Photorearrangement (o)” by specifying that reactant atom 11 is not part of a carbamate functional group.

Examples:

2-naphthoxyacetic acid (Climent and Miranda 1997)

2-naphthoxyacetic acid (Climent and Miranda 1997)

The product is formed by the reaction scheme along with other transformations.

 

References:

Climent, M.J. and Miranda, M.A. 1997. Photodegradation of dichlorprop and 2-naphthoxyacetic acid in water. Combined gc−ms and gc−ftir study. J. Agric. Food Chem. 45(5), 1916-1919.

 


2-Nitrobenzaldehyde Photorearrangement

Scheme:

Examples:

2-nitrobenzaldehyde (McFall and Anastasio 2016)

 

References:

McFall, A.S. and Anastasio, C. 2016. Photon flux dependence on solute environment in water ices. Environmental Chemistry 13(4), 682-687.

 


Benzyl Phenyl Ether Photorearrangement (o)

Scheme:

An exclusion rule is included to exclude the counterexample dimoxystrobin by specifying that reactant atom 9 is not part of a benzaldoxime functional group.

Examples:

Mandestrobin (Adachi et al. 2018) (EFSA)

Dimoxystrobin (EFSA)

 

References:

Adachi, T., Suzuki, Y., Nishiyama, M., Kodaka, R., Fujisawa, T. and Katagi, T. 2018. Photodegradation of strobilurin fungicide mandestrobin in water. J. Agric. Food Chem. 66(32), 8514-8521.

 


Benzyl Phenyl Ether Photorearrangement (p)

Scheme:

An exclusion rule is included to exclude the counterexample dimoxystrobin by specifying that reactant atom 9 is not part of a benzaldoxime functional group.

Examples:

Mandestrobin (Adachi et al. 2018) (EFSA)

Dimoxystrobin (EFSA)

 

References:

Adachi, T., Suzuki, Y., Nishiyama, M., Kodaka, R., Fujisawa, T. and Katagi, T. 2018. Photodegradation of strobilurin fungicide mandestrobin in water. J. Agric. Food Chem. 66(32), 8514-8521.

 


Enone Steroid Photorearrangement to Cyclopentenone

Scheme:

Examples:

Androstenedione (Young et al. 2013)

Testosterone (Vulliet et al. 2010)

 

References:

Vulliet, E., Falletta, M., Marote, P., Lomberget, T., Païssé, J.-O. and Grenier-Loustalot, M.-F. 2010. Light induced degradation of testosterone in waters. Sci. Total Environ. 408(17), 3554-3559.

Young, R.B., Latch, D.E., Mawhinney, D.B., Nguyen, T.-H., Davis, J.C.C. and Borch, T. 2013. Direct photodegradation of androstenedione and testosterone in natural sunlight: Inhibition by dissolved organic matter and reduction of endocrine disrupting potential. Environ. Sci. Technol. 47(15), 8416-8424.

 


Enone Steroid Photorearrangement to Lumiketone

Scheme:

Examples:

Androstenedione (Young et al. 2013)

Testosterone (Vulliet et al. 2010)

 

References:

Vulliet, E., Falletta, M., Marote, P., Lomberget, T., Païssé, J.-O. and Grenier-Loustalot, M.-F. 2010. Light induced degradation of testosterone in waters. Sci. Total Environ. 408(17), 3554-3559.

Young, R.B., Latch, D.E., Mawhinney, D.B., Nguyen, T.-H., Davis, J.C.C. and Borch, T. 2013. Direct photodegradation of androstenedione and testosterone in natural sunlight: Inhibition by dissolved organic matter and reduction of endocrine disrupting potential. Environ. Sci. Technol. 47(15), 8416-8424.


O-aryl Carbamate Photorearrangement (o)

Scheme:

Examples:

Phenisopham (Passananti et al. 2014)

 

References:

Passananti, M., Lavorgna, M., Iesce, M.R., DellaGreca, M., Criscuolo, E., Parrella, A., Isidori, M. and Temussi, F. 2014. Chlorpropham and phenisopham: Phototransformation and ecotoxicity of carbamates in the aquatic environment. Environmental Science: Processes & Impacts 16(4), 823-831.

 


O-aryl Carbamate Photorearrangement (p)

Scheme:

Examples:

Phenisopham (Passananti et al. 2014)

 

 

References:

Passananti, M., Lavorgna, M., Iesce, M.R., DellaGreca, M., Criscuolo, E., Parrella, A., Isidori, M. and Temussi, F. 2014. Chlorpropham and phenisopham: Phototransformation and ecotoxicity of carbamates in the aquatic environment. Environmental Science: Processes & Impacts 16(4), 823-831.

 


Organothiophosphorus Ester Photochemical Oxygen Transfer

Scheme:

Examples:

Butamifos (Katagi 1993)

 

References:

Katagi, T. 1993. Photochemistry of organophosphorus herbicide butamifos. J. Agric. Food Chem. 41(3), 496-501.

 


Organothiophosphorus Ester Photorearrangement

Scheme:

Examples:

Fenthion (Torrisi and Sortino 2004)

pirimiphos-methyl (EFSA)

 

References:

Torrisi, S. and Sortino, S. 2004. New insights into the photoreactivity of the organophosphorus pesticide fenthion:  A σ aryl cation as a key intermediate in the photodecomposition. J. Agric. Food Chem. 52(19), 5943-5949.

 


Phenoxyphenol Dehalogenative Photorearrangement

Scheme:

Examples:

Triclosan (Kliegman et al. 2013)

 

References:

Kliegman, S., Eustis, S.N., Arnold, W.A. and McNeill, K. 2013. Experimental and theoretical insights into the involvement of radicals in triclosan phototransformation. Environ. Sci. Technol. 47(13), 6756-6763.


Photodissociation

Aromatic Ketone Norrish II Photocleavage (C1_C4)

Scheme:

A reactivity rule is included to constrain that the ketone side chain is not part of a ring by specifying the bond between reactant atom 2 and 3 being a chain bond.

Examples:

Valerophenone (Zepp et al. 1998)

 

References:

Zepp, R.G., Gumz, M.M., Miller, W.L. and Gao, H. 1998. Photoreaction of valerophenone in aqueous solution. The Journal of Physical Chemistry A 102(28), 5716-5723.

 


Aminobenzophenone Photochemical N-dealkylation

Scheme:

An exclusion rule is included to constrain that the cleaved bond is not part of a ring.

Examples:

5-chloro-2-methylaminobenzophenone (West and Rowland 2012)

Temazepam photo-product (West and Rowland 2012)

 

References:

 

Benzyl Photodeamination to Alcohol

Scheme:

Two exclusion rules are included (1) to exclude the carbamate functional group at atom 3 and (2) to constrain that the cleaved bond between reactant atom 2 and 3 is not part of a ring.

Examples:

Rivastigmine (Temussi et al. 2012)

Imidacloprid (Wamhoff and Schneider 1999)

References:

Temussi, F., Passananti, M., Previtera, L., Iesce, M.R., Brigante, M., Mailhot, G. and DellaGreca, M. 2012. Phototransformation of the drug rivastigmine: Photoinduced cleavage of benzyl-nitrogen sigma bond. J. Photochem. Photobiol. A: Chem. 239, 1-6.

Wamhoff, H. and Schneider, V. 1999. Photodegradation of imidacloprid. J. Agric. Food Chem. 47(4), 1730-1734.

West, C.E. and Rowland, S.J. 2012. Aqueous phototransformation of diazepam and related human metabolites under simulated sunlight. Environ. Sci. Technol. 46(9), 4749-4756.

 


Benzyl Photodeamination to Carbonyl

Scheme:

Two exclusion rules are included (1) to exclude the amide functional group at atom 3 and (2) to constrain that the cleaved bond between reactant atom 2 and 3 is not part of a ring.

Examples:

Rivastigmine (Temussi et al. 2012)

Imidacloprid (Moza et al. 1998)

Methotrexate (Chatterji and Gallelli 1978)

The products are formed by the reaction scheme along with other transformations.

Folic acid (Saxby et al. 1983)

The products are formed by the reaction scheme along with other transformations.

 

References:

Chatterji, D.C. and Gallelli, J.F. 1978. Thermal and photolytic decomposition of methotrexate in aqueous solutions. J. Pharm. Sci. 67(4), 526-531.

Moza, P.N., Hustert, K., Feicht, E. and Kettrup, A. 1998. Photolysis of imidacloprid in aqueous solution. Chemosphere 36(3), 497-502.

Saxby, M.J., Smith, P.R., Blake, C.J. and Coveney, L.V. 1983. The degradation of folic acid in a model food system and in beer. Food Chem. 12(2), 115-126.

Temussi, F., Passananti, M., Previtera, L., Iesce, M.R., Brigante, M., Mailhot, G. and DellaGreca, M. 2012. Phototransformation of the drug rivastigmine: Photoinduced cleavage of benzyl-nitrogen sigma bond. J. Photochem. Photobiol. A: Chem. 239, 1-6.

 


Benzyl Thiocarbamate Photocleavage to Carbonyl

Scheme:

An exclusion rule is included by specifying that reactant atom 2 is not a carbonyl carbon.

Examples:

Thiobencarb (Ruzo and Casida 1985)

drepamon sulfoxide (Draper and Crosby 1984)

 

References:

Draper, W.M. and Crosby, D.G. 1984. Photochemistry and volatility of drepamon in water. J. Agric. Food Chem. 32(4), 728-733.

Ruzo, L.O. and Casida, J.E. 1985. Photochemistry of thiocarbamate herbicides: Oxidative and free radical processes of thiobencarb and diallate. J. Agric. Food Chem. 33(2), 272-276.

 


Cyclohexanedione Oxime N-O Photocleavage

Scheme:

Examples:

Alloxydim (Sandín-España et al. 2013)

Clethodim (Sevilla-Morán et al. 2010)

Tralkoxydim (EFSA)

 

References:

Sandín-España, P., Sevilla-Morán, B., Calvo, L., Mateo-Miranda, M. and Alonso-Prados, J.L. 2013. Photochemical behavior of alloxydim herbicide in environmental waters. Structural elucidation and toxicity of degradation products. Microchem. J. 106(Supplement C), 212-219.

Sevilla-Morán, B., Alonso-Prados, J.L., García-Baudín, J.M. and Sandín-España, P. 2010. Indirect photodegradation of clethodim in aqueous media. Byproduct identification by quadrupole time-of-flight mass spectrometry. J. Agric. Food Chem. 58(5), 3068-3076.

 


Diazepam Ring Photocleavage

Scheme:

Examples:

Diazepam (West and Rowland 2012)

Nordiazepam (West and Rowland 2012)

 

Temazepam (West and Rowland 2012)

 

Oxazepam (Calisto et al. 2011, West and Rowland 2012)

Lorazepam (Calisto et al. 2011)

 

References:

Calisto, V., Domingues, M.R.M. and Esteves, V.I. 2011. Photodegradation of psychiatric pharmaceuticals in aquatic environments – kinetics and photodegradation products. Water Res. 45(18), 6097-6106.

West, C.E. and Rowland, S.J. 2012. Aqueous phototransformation of diazepam and related human metabolites under simulated sunlight. Environ. Sci. Technol. 46(9), 4749-4756.

 


Dihydrophenanthrene Benzyl Photodealkylation

Scheme:

An exclusion rule is included to constrain that the cleaved bond is not part of a ring.

Examples:

5-[8-fluoro-4-isopropyl-2-(N-methylmethanesulfonamido)-5H,6H-benzo[h]quinazolin-6-yl]-3,5-dihydroxypentanoic acid (Astarita et al. 2007)

 

References:

Astarita, A., DellaGreca, M., Iesce, M.R., Montanaro, S., Previtera, L. and Temussi, F. 2007. Polycyclic compounds by sunlight exposure of the drug rosuvastatin in water. J. Photochem. Photobiol. A: Chem. 187(2), 263-268.

 


Dihydrophenanthrene Benzyl Oxidative Photodealkylation

Scheme:

An exclusion rule is included to constrain that the cleaved bond is not part of a ring.

Examples:

5-[8-fluoro-4-isopropyl-2-(N-methylmethanesulfonamido)-5H,6H-benzo[h]quinazolin-6-yl]-3,5-dihydroxypentanoic acid (Astarita et al. 2007)

5-{3-fluoro-7-isopropyl-5H,6H-benzo[c]carbazol-5-yl}-3,5-dihydroxypentanoic acid (Cermola et al. 2007)

 

References:

Astarita, A., DellaGreca, M., Iesce, M.R., Montanaro, S., Previtera, L. and Temussi, F. 2007. Polycyclic compounds by sunlight exposure of the drug rosuvastatin in water. J. Photochem. Photobiol. A: Chem. 187(2), 263-268.

Cermola, F., DellaGreca, M., Iesce, M.R., Montanaro, S., Previtera, L., Temussi, F. and Brigante, M. 2007. Irradiation of fluvastatin in water: Structure elucidation of photoproducts. J. Photochem. Photobiol. A: Chem. 189(2), 264-271.


Dinitroaniline Photochemical N-dealkylation

Scheme:

Examples:

Trifluralin (Leitis and Crosby 1974, Tagle et al. 2005)(EFSA)

Pendimethalin (Dureja and Walia 1989, Pal et al. 1991)

Butralin (Plimmer and Klingebiel 1974) (EFSA)

Benfluralin (EFSA)

The products are formed by the reaction scheme along with other transformations.

Oryzalin (EFSA)

The product is formed by the reaction scheme along with other transformations.

 

References:

Dureja, P. and Walia, S. 1989. Photodecomposition of pendimethalin. Pestic. Sci. 25(2), 105-114.

Leitis, E. and Crosby, D.G. 1974. Photodecomposition of trifluralin. J. Agric. Food Chem. 22(5), 842-848.

Pal, S., Moza, P.N. and Kettrup, A. 1991. Photochemistry of pendimethalin. J. Agric. Food Chem. 39(4), 797-800.

Plimmer, J.R. and Klingebiel, U.I. 1974. Photochemistry of n-sec-butyl-4-tert-butyl-2,6-dinitroaniline. J. Agric. Food Chem. 22(4), 689-693.

Tagle, M.G.S., Laura Salum, M., Bujan, E.I. and Arguello, G.A. 2005. Time evolution and competing pathways in photodegradation of trifluralin and three of its major degradation products. Photochemical & Photobiological Sciences 4(11), 869-875.

 


Fluoroquinolone Ethylenediamine Photochemical N-dealkylation

Scheme:

An exclusion rule is included to distinguish this scheme from “Fluoroquinolone Piperazine Photochemical bis N-dealkylation” by specifying that reactant atom 11 is not part of the full piperazine ring.

Examples:

Enrofloxacin photo-product (Burhenne et al. 1997), ciprofloxacin photo-product (Baena-Nogueras et al. 2017)

Danofloxacin photo-product (Baena-Nogueras et al. 2017)

Gatifloxacin (Ge et al. 2018)

The product is formed by the reaction scheme along with other transformations.

 

References:

Baena-Nogueras, R.M., González-Mazo, E. and Lara-Martín, P.A. 2017. Photolysis of antibiotics under simulated sunlight irradiation: Identification of photoproducts by high-resolution mass spectrometry. Environ. Sci. Technol. 51(6), 3148-3156.

Burhenne, J., Ludwig, M., Nikoloudis, P. and Spiteller, M. 1997. Primary photoproducts and half-lives. Environmental Science and Pollution Research 4(1), 10-15.

Ge, L., Halsall, C., Chen, C.-E., Zhang, P., Dong, Q. and Yao, Z. 2018. Exploring the aquatic photodegradation of two ionisable fluoroquinolone antibiotics – gatifloxacin and balofloxacin: Degradation kinetics, photobyproducts and risk to the aquatic environment. Sci. Total Environ. 633, 1192-1197.

 


Fluoroquinolone Photochemical N-dealkylation

Scheme:

 

A reactivity rule is included to distinguish this scheme from “Fluoroquinolone Piperazine Photochemical bis N-dealkylation” and “Fluoroquinolone Piperazine Photochemical N-dealkylation” by specifying that the shortest path between reactant atom 11 and 13 is 4 bonds.

Examples:

Enrofloxacin (Wammer et al. 2013)

Enrofloxacin photo-product (Sturini et al. 2010)

Difloxacin (Kusari et al. 2009)

Danofloxacin (Ge et al. 2010)

 

References:

Ge, L., Chen, J., Wei, X., Zhang, S., Qiao, X., Cai, X. and Xie, Q. 2010. Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents. Environ. Sci. Technol. 44(7), 2400-2405.

Kusari, S., Prabhakaran, D., Lamshöft, M. and Spiteller, M. 2009. In vitro residual anti-bacterial activity of difloxacin, sarafloxacin and their photoproducts after photolysis in water. Environ. Pollut. 157(10), 2722-2730.

Sturini, M., Speltini, A., Maraschi, F., Profumo, A., Pretali, L., Fasani, E. and Albini, A. 2010. Photochemical degradation of marbofloxacin and enrofloxacin in natural waters. Environ. Sci. Technol. 44(12), 4564-4569.

Wammer, K.H., Korte, A.R., Lundeen, R.A., Sundberg, J.E., McNeill, K. and Arnold, W.A. 2013. Direct photochemistry of three fluoroquinolone antibacterials: Norfloxacin, ofloxacin, and enrofloxacin. Water Res. 47(1), 439-448.

 


Fluoroquinolone Piperazine Photochemical Bis N-dealkylation

Scheme:

 

Examples:

Ciprofloxacin photo-product (Baena-Nogueras et al. 2017)

Enrofloxacin (Burhenne et al. 1997)

Danofloxacin (Baena-Nogueras et al. 2017)

 

References:

Baena-Nogueras, R.M., González-Mazo, E. and Lara-Martín, P.A. 2017. Photolysis of antibiotics under simulated sunlight irradiation: Identification of photoproducts by high-resolution mass spectrometry. Environ. Sci. Technol. 51(6), 3148-3156.

Burhenne, J., Ludwig, M., Nikoloudis, P. and Spiteller, M. 1997. Primary photoproducts and half-lives. Environmental Science and Pollution Research 4(1), 10-15.

 


Imidazolinone Ring Photocleavage to Aldehyde

Scheme:

Examples:

Imazapic (Christiansen et al. 2015, Harir et al. 2007b)

Imazamox (Harir et al. 2007a)

Imazapyr (Quivet et al. 2004)

 

References:

Christiansen, A., Peterson, A., Anderson, S.C., Lass, R., Johnson, M. and Nienow, A.M. 2015. Analysis of the photodegradation of the imidazolinone herbicides imazamox, imazapic, imazaquin, and imazamethabenz-methyl in aqueous solution. J. Agric. Food Chem. 63(50), 10768-10777.

Harir, M., Frommberger, M., Gaspar, A., Martens, D., Kettrup, A., El Azzouzi, M. and Schmitt-Kopplin, P. 2007a. Characterization of imazamox degradation by-products by using liquid chromatography mass spectrometry and high-resolution fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 389(5), 1459-1467.

Harir, M., Gaspar, A., Frommberger, M., Lucio, M., Azzouzi, M.E., Martens, D., Kettrup, A. and Schmitt-Kopplin, P. 2007b. Photolysis pathway of imazapic in aqueous solution: Ultrahigh resolution mass spectrometry analysis of intermediates. J. Agric. Food Chem. 55(24), 9936-9943.

Quivet, E., Faure, R., Georges, J., Païssé, J.O. and Herbreteau, B. 2004. Kinetic studies of imazapyr photolysis and characterization of the main photoproducts. Toxicol. Environ. Chem. 86(4), 197-206.

 


Imidazolinone Ring Photocleavage to Amide

Scheme:

Examples:

Imazapic (Harir et al. 2007b)

Imazamox (Harir et al. 2007a)

Imazapyr (Mallipudi et al. 1991)

The product is formed by the reaction scheme along with other transformations.

Imazaquin (Barkani et al. 2005) (EFSA)

p-imazamethabenz-methyl (Brigante et al. 2007)

The product is formed by the reaction scheme along with other transformations.

 

References:

Barkani, H., Catastini, C., Emmelin, C., Sarakha, M., El Azzouzi, M. and Chovelon, J.M. 2005. Study of the phototransformation of imazaquin in aqueous solution: A kinetic approach. J. Photochem. Photobiol. A: Chem. 170(1), 27-35.

Brigante, M., Emmelin, C., Ferronato, C., Greca, M.D., Previtera, L., Paisse, J.O. and Chovelon, J.-M. 2007. Effect of positional isomerism on the abiotic degradation of pesticides: Case of m- and p-imazamethabenz-methyl. Chemosphere 68(3), 464-471.

Harir, M., Frommberger, M., Gaspar, A., Martens, D., Kettrup, A., El Azzouzi, M. and Schmitt-Kopplin, P. 2007a. Characterization of imazamox degradation by-products by using liquid chromatography mass spectrometry and high-resolution fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 389(5), 1459-1467.

Harir, M., Gaspar, A., Frommberger, M., Lucio, M., Azzouzi, M.E., Martens, D., Kettrup, A. and Schmitt-Kopplin, P. 2007b. Photolysis pathway of imazapic in aqueous solution: Ultrahigh resolution mass spectrometry analysis of intermediates. J. Agric. Food Chem. 55(24), 9936-9943.

Mallipudi, N.M., Stout, S.J., DaCunha, A.R. and Lee, A.H. 1991. Photolysis of imazapyr (ac 243997) herbicide in aqueous media. J. Agric. Food Chem. 39(2), 412-417.

 


Imidazolinone Ring Photocleavage to Amidine

Scheme:

Examples:

Imazapic (Harir et al. 2007b)

Imazamox (Harir et al. 2007a)

Imazapyr (Quivet et al. 2004)

 

References:

Harir, M., Frommberger, M., Gaspar, A., Martens, D., Kettrup, A., El Azzouzi, M. and Schmitt-Kopplin, P. 2007a. Characterization of imazamox degradation by-products by using liquid chromatography mass spectrometry and high-resolution fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 389(5), 1459-1467.

Harir, M., Gaspar, A., Frommberger, M., Lucio, M., Azzouzi, M.E., Martens, D., Kettrup, A. and Schmitt-Kopplin, P. 2007b. Photolysis pathway of imazapic in aqueous solution: Ultrahigh resolution mass spectrometry analysis of intermediates. J. Agric. Food Chem. 55(24), 9936-9943.

Quivet, E., Faure, R., Georges, J., Païssé, J.O. and Herbreteau, B. 2004. Kinetic studies of imazapyr photolysis and characterization of the main photoproducts. Toxicol. Environ. Chem. 86(4), 197-206.

 


Imidazolinone Ring Photocleavage to Carboxylic Acid

Scheme:

Examples:

Imazamox (Harir et al. 2007)

Imazaquin (Barkani et al. 2005) (EFSA)

Imazapyr (Mallipudi et al. 1991, Quivet et al. 2004)

References:

Barkani, H., Catastini, C., Emmelin, C., Sarakha, M., El Azzouzi, M. and Chovelon, J.M. 2005. Study of the phototransformation of imazaquin in aqueous solution: A kinetic approach. J. Photochem. Photobiol. A: Chem. 170(1), 27-35.

Harir, M., Frommberger, M., Gaspar, A., Martens, D., Kettrup, A., El Azzouzi, M. and Schmitt-Kopplin, P. 2007. Characterization of imazamox degradation by-products by using liquid chromatography mass spectrometry and high-resolution fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 389(5), 1459-1467.

Mallipudi, N.M., Stout, S.J., DaCunha, A.R. and Lee, A.H. 1991. Photolysis of imazapyr (ac 243997) herbicide in aqueous media. J. Agric. Food Chem. 39(2), 412-417.

Quivet, E., Faure, R., Georges, J., Païssé, J.O. and Herbreteau, B. 2004. Kinetic studies of imazapyr photolysis and characterization of the main photoproducts. Toxicol. Environ. Chem. 86(4), 197-206.

 


Nitroenamine Photocleavage

Scheme:

A reactivity rule is included to ensure the correct valence of product atom 1.

Examples:

Nitenpyram (Ezell et al. 2019)

 

 

References:

Ezell, M.J., Wang, W., Shemesh, D., Ni, A., Gerber, R.B. and Finlayson-Pitts, B.J. 2019. Experimental and theoretical studies of the environmental sensitivity of the absorption spectra and photochemistry of nitenpyram and analogs. ACS Earth and Space Chemistry 3(9), 2063-2075.

 


Nitroenamine Photocleavage to Carbonyl

Scheme:

Examples:

Nitenpyram (Todey et al. 2018)

 

Nithiazine (Kleier et al. 1985)

 

References:

Kleier, D., Holden, I., Casida, J.E. and Ruzo, L.O. 1985. Novel photoreactions of an insecticidal nitromethylene heterocycle. J. Agric. Food Chem. 33(5), 998-1000.

Todey, S.A., Fallon, A.M. and Arnold, W.A. 2018. Neonicotinoid insecticide hydrolysis and photolysis: Rates and residual toxicity. Environ. Toxicol. Chem. 37(11), 2797-2809.

 


Nitrosamine N-C Photocleavage

Scheme:

Examples:

N-nitrosodimethylamine (Plumlee and Reinhard 2007)

 

References:

Plumlee, M.H. and Reinhard, M. 2007. Photochemical attenuation of n-nitrosodimethylamine (ndma) and other nitrosamines in surface water. Environ. Sci. Technol. 41(17), 6170-6176.

 


p-Aminobenzoic Acid Photochemical N-dealkylation

Scheme:

An exclusion rule is included to constrain that the cleaved bond is not part of a ring.

Examples:

octyldimethyl PABA (Sakkas et al. 2003)

1-methyl-5-carboxylic acid-benzotriazole photo-product (Weidauer et al. 2016)

N-methyl-4-aminobenzoic acid (Chatterji and Gallelli 1978)

 

References:

Chatterji, D.C. and Gallelli, J.F. 1978. Thermal and photolytic decomposition of methotrexate in aqueous solutions. J. Pharm. Sci. 67(4), 526-531.

Sakkas, V.A., Giokas, D.L., Lambropoulou, D.A. and Albanis, T.A. 2003. Aqueous photolysis of the sunscreen agent octyl-dimethyl-p-aminobenzoic acid: Formation of disinfection byproducts in chlorinated swimming pool water. J. Chromatogr. A 1016(2), 211-222.

Weidauer, C., Davis, C., Raeke, J., Seiwert, B. and Reemtsma, T. 2016. Sunlight photolysis of benzotriazoles – identification of transformation products and pathways. Chemosphere 154, 416-424.

 


Phenoxyphenol Ether Photocleavage

Scheme:

Examples:

Triclosan (Kliegman et al. 2013)

6-OH-PBDE 99 (Erickson et al. 2012)

6-Cl-triclosan (Buth et al. 2009)

 

References:

Buth, J.M., Grandbois, M., Vikesland, P.J., McNeill, K. and Arnold, W.A. 2009. Aquatic photochemistry of chlorinated triclosan derivatives: Potential source of polychlorodibenzo-p-dioxins. Environ. Toxicol. Chem. 28(12), 2555-2563.

Erickson, P.R., Grandbois, M., Arnold, W.A. and McNeill, K. 2012. Photochemical formation of brominated dioxins and other products of concern from hydroxylated polybrominated diphenyl ethers (oh-pbdes). Environ. Sci. Technol. 46(15), 8174-8180.

Kliegman, S., Eustis, S.N., Arnold, W.A. and McNeill, K. 2013. Experimental and theoretical insights into the involvement of radicals in triclosan phototransformation. Environ. Sci. Technol. 47(13), 6756-6763.

 


Phenylurea Photochemical N-dealkylation

Scheme:

An exclusion rule is included to constrain that the cleaved bond is not part of a ring.

Examples:

Metoxuron (Boulkamh et al. 2001)

Diuron (Jirkovský et al. 1997)

Isoproturon (Dureja et al. 1991)

Metobromuron photo-product (Rosen and Strusz 1968)

Linuron photo-product (Rosen et al. 1969)

 

 

References:

Boulkamh, A., Harakat, D., Sehili, T. and Boule, P. 2001. Phototransformation of metoxuron [3-(3-chloro-4-methoxyphenyl)-1,1-dimethylurea] in aqueous solution. Pest Manage. Sci. 57(12), 1119-1126.

Dureja, P., Walia, S. and Sharma, K.K. 1991. Photolysis of isoproturon in aqueous solution. Toxicol. Environ. Chem. 34(1), 65-71.

Jirkovský, J., Faure, V. and Boule, P. 1997. Photolysis of diuron. Pestic. Sci. 50(1), 42-52.

Rosen, J.D. and Strusz, R.F. 1968. Photolysis of 3-(p-bromophenyl)-1-methoxy-1-methylurea. J. Agric. Food Chem. 16(4), 568-570.

Rosen, J.D., Strusz, R.F. and Still, C.C. 1969. Photolysis of phenylurea herbicides. J. Agric. Food Chem. 17(2), 206-207.

 


Phenylurea Photochemical N-demethoxylation

Scheme:

An exclusion rule is included to constrain that the cleaved bond is not part of a ring.

Examples:

Metobromun (Rosen and Strusz 1968)

Linuron (Rosen et al. 1969)

 

References:

Rosen, J.D. and Strusz, R.F. 1968. Photolysis of 3-(p-bromophenyl)-1-methoxy-1-methylurea. J. Agric. Food Chem. 16(4), 568-570.

Rosen, J.D., Strusz, R.F. and Still, C.C. 1969. Photolysis of phenylurea herbicides. J. Agric. Food Chem. 17(2), 206-207.

 


Phenylurea N-formyl Photocleavage

Scheme:

An exclusion rule is included to constrain that the cleaved bond is not part of a ring.

Examples:

Monuron photo-product (Crosby and Tang 1969)

Monuron photo-product (Crosby and Tang 1969)

 

 

References:

Crosby, D.G. and Tang, C.S. 1969. Photodecomposition of 3-(p-chlorophenyl)-1,1-dimethylurea (monuron). J. Agric. Food Chem. 17(5), 1041-1044.

 


Pyridinium Photochemical N-dealkylation

Scheme:

An exclusion rule is included to constrain that the cleaved bond is not part of a ring.

Examples:

1-butyl-4-methylpyridinium (Calza et al. 2017)

1-ethylpyridinium (Calza et al. 2017)

1-(3-cyanopropyl)pyridinium (Calza et al. 2017)

 

References:

Calza, P., Noè, G., Fabbri, D., Santoro, V., Minero, C., Vione, D. and Medana, C. 2017. Photoinduced transformation of pyridinium-based ionic liquids, and implications for their photochemical behavior in surface waters. Water Res. 122, 194-206.

 


s-Triazine Side Chain Photochemical N-dealkylation

Scheme:

An exclusion rule is included to constrain that the cleaved bond is not part of a ring.

Examples:

desethyl atrazine (Torrents et al. 1997)

desisopropyl atrazine (Torrents et al. 1997)

Hexazinone photo-product (Rhodes 1980)

Cybutryne (Okamura et al. 1999)

triflusulfuron-methyl (EFSA)

Pirimicarb (Pirisi et al. 1996) (EFSA)

Bupirimate (EFSA)

Terbuthylazine (EFSA)

Dicyclanil (Goutailler et al. 2002)

 

 

References:

Goutailler, G., Guillard, C., Faure, R. and Païssé, O. 2002. Degradation pathway of dicyclanil in water in the presence of titanium dioxide. Comparison with photolysis. J. Agric. Food Chem. 50(18), 5115-5120.

Okamura, H., Aoyama, I., Liu, D., Maguire, J., Pacepavicius, G.J. and Lau, Y.L. 1999. Photodegradation of irgarol 1051 in water. Journal of Environmental Science and Health, Part B 34(2), 225-238.

Pirisi, F.M., Cabras, P., Garau, V.L., Melis, M. and Secchi, E. 1996. Photodegradation of pesticides. Photolysis rates and half-life of pirimicarb and its metabolites in reactions in water and in solid phase. J. Agric. Food Chem. 44(8), 2417-2422.

Rhodes, R.C. 1980. Studies with carbon-14-labeled hexazinone in water and bluegill sunfish. J. Agric. Food Chem. 28(2), 306-310.

Torrents, A., Anderson, B.G., Bilboulian, S., Johnson, W.E. and Hapeman, C.J. 1997. Atrazine photolysis:  Mechanistic investigations of direct and nitrate-mediated hydroxy radical processes and the influence of dissolved organic carbon from the chesapeake bay. Environ. Sci. Technol. 31(5), 1476-1482.

 


Sulfonamide N-C Photocleavage (6-5)

Scheme:

Examples:

Sulfamethoxazole (Boreen et al. 2004)

Sulfisoxazole (Boreen et al. 2004)

Sulfamethizole (Boreen et al. 2004)

Sulfathiazole (Boreen et al. 2004)

N-acetyl sulfamethoxazole (Bonvin et al. 2013)

 

References:

Bonvin, F., Omlin, J., Rutler, R., Schweizer, W.B., Alaimo, P.J., Strathmann, T.J., McNeill, K. and Kohn, T. 2013. Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: Evidence for abiotic back-transformation. Environ. Sci. Technol. 47(13), 6746-6755.

Boreen, A.L., Arnold, W.A. and McNeill, K. 2004. Photochemical fate of sulfa drugs in the aquatic environment:  Sulfa drugs containing five-membered heterocyclic groups. Environ. Sci. Technol. 38(14), 3933-3940.

 


Tetracycline Photochemical N-dealkylation

Scheme:

An exclusion rule is included to constrain that the cleaved bond is not part of a ring.

Examples:

Chlortetracycline (Chen et al. 2012)

The product is formed by the reaction scheme along with other transformations.

 

References:

Chen, Y., Li, H., Wang, Z., Tao, T., Wei, D. and Hu, C. 2012. Photolysis of chlortetracycline in aqueous solution: Kinetics, toxicity and products. Journal of Environmental Sciences 24(2), 254-260.

 


Photoelimination

1_2_4-Triazine-5-one Photochemical N-deamination

Scheme:

Examples:

Metamitron (Kouras-Hadef et al. 2011, Palm et al. 1997) (EFSA)

Metribuzin (EFSA)

 

References:

Kouras-Hadef, S., de Sainte-Claire, P., ter Halle, A., Amine-Khodja, A. and Richard, C. 2011. The role of triplet state keto–enol tautomerism in the photodeamination of metamitron. The Journal of Physical Chemistry A 115(50), 14397-14406.

Palm, W.U., Millet, M. and Zetzsch, C. 1997. Photochemical reactions of metamitron. Chemosphere 35(5), 1117-1130.

 


Aromatic Acetic Acid Photodecarboxylation

Scheme:

Examples:

Diclofenac (Agüera et al. 2005)

Ketoprofen (Koumaki et al. 2015)

1-naphthaleneacetic acid (Crosby and Tang 1969) (EFSA)

Benoxaprofen (Navaratnam et al. 1985)

Naproxen (Moore and Chappuis 1988)

Indomethacin (Temussi et al. 2011)

 

References:

Agüera, A., Pérez Estrada, L.A., Ferrer, I., Thurman, E.M., Malato, S. and Fernández-Alba, A.R. 2005. Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. J. Mass Spectrom. 40(7), 908-915.

Crosby, D.G. and Tang, C.-S. 1969. Photodecomposition of 1-naphthaleneacetic acid. J. Agric. Food Chem. 17(6), 1291-1293.

Koumaki, E., Mamais, D., Noutsopoulos, C., Nika, M.-C., Bletsou, A.A., Thomaidis, N.S., Eftaxias, A. and Stratogianni, G. 2015. Degradation of emerging contaminants from water under natural sunlight: The effect of season, ph, humic acids and nitrate and identification of photodegradation by-products. Chemosphere 138, 675-681.

Moore, D.E. and Chappuis, P.P. 1988. A comparative study of photochemistry of the non-steroidal anti-inflammatory drugs, naproxen, benoxaprofen and indomethacin. Photochem. Photobiol. 47(2), 173-180.

Navaratnam, S., Hughes, J.L., Parsons, B.J. and Phillips, G.O. 1985. Laser flash and steady-state photolysis of benoxaprofen in aqueous solution. Photochem. Photobiol. 41(4), 375-380.

Temussi, F., Cermola, F., DellaGreca, M., Iesce, M.R., Passananti, M., Previtera, L. and Zarrelli, A. 2011. Determination of photostability and photodegradation products of indomethacin in aqueous media. J. Pharm. Biomed. Anal. 56(4), 678-683.

 


Aromatic Acetic Acid Photodecarboxylation to Alcohol

Scheme:

Examples:

Ibuprofen (Jacobs et al. 2011)

Ketoprofen (Koumaki et al. 2015)

1-naphthaleneacetic acid (Crosby and Tang 1969) (EFSA)

4,4'-dichlorobenzilic acid (Ware et al. 1980)

The product is formed by the reaction scheme along with other transformations.

Carprofen (Chen et al. 2003)

 

References:

Chen, F.A., Wang, P.Y., Wen, K.C., Chen, C.Y. and Wu, A.B. 2003. Photolysis of nsaids. Ii. Online lc-ms determination of photodegradants from carprofen. J. Food Drug Anal. 11(3), 186-190.

Crosby, D.G. and Tang, C.-S. 1969. Photodecomposition of 1-naphthaleneacetic acid. J. Agric. Food Chem. 17(6), 1291-1293.

Jacobs, L.E., Fimmen, R.L., Chin, Y.-P., Mash, H.E. and Weavers, L.K. 2011. Fulvic acid mediated photolysis of ibuprofen in water. Water Res. 45(15), 4449-4458.

Koumaki, E., Mamais, D., Noutsopoulos, C., Nika, M.-C., Bletsou, A.A., Thomaidis, N.S., Eftaxias, A. and Stratogianni, G. 2015. Degradation of emerging contaminants from water under natural sunlight: The effect of season, ph, humic acids and nitrate and identification of photodegradation by-products. Chemosphere 138, 675-681.

Ware, G.W., Crosby, D.G. and Giles, J.W. 1980. Photodecomposition of dda. Arch. Environ. Contam. Toxicol. 9(2), 135-146.

 


Aromatic Acetic Acid Photodecarboxylation to Carbonyl

Scheme:

Examples:

Ibuprofen (Jacobs et al. 2011)

Naproxen (Packer et al. 2003)

Ketoprofen (Kotnik et al. 2016)

Diclofenac (Agüera et al. 2005)

 

1-naphthaleneacetic acid (Crosby and Tang 1969) (EFSA)

2,2'-bis(4-chlorophenyl)acetic acid (Ware et al. 1980)

 

References:

Agüera, A., Pérez Estrada, L.A., Ferrer, I., Thurman, E.M., Malato, S. and Fernández-Alba, A.R. 2005. Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. J. Mass Spectrom. 40(7), 908-915.

Crosby, D.G. and Tang, C.-S. 1969. Photodecomposition of 1-naphthaleneacetic acid. J. Agric. Food Chem. 17(6), 1291-1293.

Jacobs, L.E., Fimmen, R.L., Chin, Y.-P., Mash, H.E. and Weavers, L.K. 2011. Fulvic acid mediated photolysis of ibuprofen in water. Water Res. 45(15), 4449-4458.

Kotnik, K., Kosjek, T., Žegura, B., Filipič, M. and Heath, E. 2016. Photolytic fate and genotoxicity of benzophenone-derived compounds and their photodegradation mixtures in the aqueous environment. Chemosphere 147, 114-123.

Packer, J.L., Werner, J.J., Latch, D.E., McNeill, K. and Arnold, W.A. 2003. Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. Aquat. Sci. 65(4), 342-351.

Ware, G.W., Crosby, D.G. and Giles, J.W. 1980. Photodecomposition of dda. Arch. Environ. Contam. Toxicol. 9(2), 135-146.

 


Aromatic Carboxylic Acid Photodecarboxylation

Scheme:

A relative reasoning exclusion rule is included by specifying that reactant atom 1 is not connected to an imidazolinone functional group through an aromatic bond.

Examples:

flutolanil photo-product (o-phthalic acid) (Lam et al. 2005)

flutolanil photo-product (2‐trifluoromethylbenzoic acid) (Lam et al. 2005)

Imazapic photo-product (Christiansen et al. 2015)

Imazaquin photo-product 1 (Christiansen et al. 2015)

Imazaquin photo-product 2 (Barkani et al. 2005)

Imazapyr photo-product (Quivet et al. 2004)

Ciprofloxacin (Ge et al. 2010)

2-phenylbenzimidazole-5-sulfonic acid photo-product (Zhang et al. 2010)

Acifluorfen (Vialaton and Richard 2002)

quinmerac (Pinna and Pusino 2012)

 

References:

Barkani, H., Catastini, C., Emmelin, C., Sarakha, M., El Azzouzi, M. and Chovelon, J.M. 2005. Study of the phototransformation of imazaquin in aqueous solution: A kinetic approach. J. Photochem. Photobiol. A: Chem. 170(1), 27-35.

Christiansen, A., Peterson, A., Anderson, S.C., Lass, R., Johnson, M. and Nienow, A.M. 2015. Analysis of the photodegradation of the imidazolinone herbicides imazamox, imazapic, imazaquin, and imazamethabenz-methyl in aqueous solution. J. Agric. Food Chem. 63(50), 10768-10777.

Ge, L., Chen, J., Wei, X., Zhang, S., Qiao, X., Cai, X. and Xie, Q. 2010. Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents. Environ. Sci. Technol. 44(7), 2400-2405.

Lam, M.W., Young, C.J. and Mabury, S.A. 2005. Aqueous photochemical reaction kinetics and transformations of fluoxetine. Environ. Sci. Technol. 39(2), 513-522.

Pinna, M.V. and Pusino, A. 2012. Direct and indirect photolysis of two quinolinecarboxylic herbicides in aqueous systems. Chemosphere 86(6), 655-658.

Quivet, E., Faure, R., Georges, J., Païssé, J.O. and Herbreteau, B. 2004. Kinetic studies of imazapyr photolysis and characterization of the main photoproducts. Toxicol. Environ. Chem. 86(4), 197-206.

Vialaton, D. and Richard, C. 2002. Phototransformation of aromatic pollutants in solar light: Photolysis versus photosensitized reactions under natural water conditions. Aquat. Sci. 64(2), 207-215.

Zhang, S., Chen, J., Qiao, X., Ge, L., Cai, X. and Na, G. 2010. Quantum chemical investigation and experimental verification on the aquatic photochemistry of the sunscreen 2-phenylbenzimidazole-5-sulfonic acid. Environ. Sci. Technol. 44(19), 7484-7490.

 


Aromatic Carboxylic Acid Photodecarboxylation to Alcohol

Scheme:

A relative reasoning exclusion rule is included by specifying that reactant atom 1 is not connected to an imidazolinone functional group through an aromatic bond.

Examples:

Gentisic acid (McConville et al. 2016)

Imazaquin photo-product (Christiansen et al. 2015)

4-aminobenzoic acid (Shaw et al. 1992)

 

References:

Christiansen, A., Peterson, A., Anderson, S.C., Lass, R., Johnson, M. and Nienow, A.M. 2015. Analysis of the photodegradation of the imidazolinone herbicides imazamox, imazapic, imazaquin, and imazamethabenz-methyl in aqueous solution. J. Agric. Food Chem. 63(50), 10768-10777.

McConville, M.B., Hubert, T.D. and Remucal, C.K. 2016. Direct photolysis rates and transformation pathways of the lampricides tfm and niclosamide in simulated sunlight. Environ. Sci. Technol. 50(18), 9998-10006.

Shaw, A.A., Wainschel, L.A. and Shetlar, M.D. 1992. The photochemistry of p-aminobenzoic acid. Photochem. Photobiol. 55(5), 647-656.

 


Benzotriazole Photodenitrogenation

Scheme:

An exclusion rule is included to constrain that benzene ring is not substituted by a hydroxyl group according to counterexamples. (Weidauer et al. 2016)

Examples:

1H-benzotriazole (Weidauer et al. 2016)

4-methyl-1H-benzotriazole (Weidauer et al. 2016)

5-methyl-1H-benzotriazole (Weidauer et al. 2016)

4-OH-benzotriazole (Weidauer et al. 2016)

5-carboxylic acid-benzotriazole (Weidauer et al. 2016)

1-methyl-5-carboxylic acid-benzotriazole (Weidauer et al. 2016)

 

References:

Weidauer, C., Davis, C., Raeke, J., Seiwert, B. and Reemtsma, T. 2016. Sunlight photolysis of benzotriazoles – identification of transformation products and pathways. Chemosphere 154, 416-424.

 


Benzotriazole Photodenitrogenation to Phenol (o)

Scheme:

An exclusion rule is included to constrain that benzene ring is not substituted by a hydroxyl group according to counterexamples. (Weidauer et al. 2016)

Examples:

1H-benzotriazole (Weidauer et al. 2016)

4-methyl-1H-benzotriazole (Weidauer et al. 2016)

5-methyl-1H-benzotriazole (Weidauer et al. 2016)

4-OH-benzotriazole (Weidauer et al. 2016)

5-carboxylic acid-benzotriazole (Weidauer et al. 2016)

1-methyl-5-carboxylic acid-benzotriazole (Weidauer et al. 2016)

 

References:

Weidauer, C., Davis, C., Raeke, J., Seiwert, B. and Reemtsma, T. 2016. Sunlight photolysis of benzotriazoles – identification of transformation products and pathways. Chemosphere 154, 416-424.

 


Cephem Photodecarboxylation

Scheme:

Examples:

Cephapirin (Wang and Lin 2012)

Cephradine (Wang and Lin 2012)

Cephalexin (Wang and Lin 2012)

 

References:

Wang, X.-H. and Lin, A.Y.-C. 2012. Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity. Environ. Sci. Technol. 46(22), 12417-12426.

 


Cyanohydrin Cyano Photoelimination to Aldehyde

Scheme:

Examples:

Cyphenothrin (Suzuki et al. 2017)

The product is formed by the reaction scheme along with other transformations.

 

References:

Suzuki, Y., Yoshida, M., Sugano, T., Shibata, A., Kodaka, R., Fujisawa, T. and Katagi, T. 2017. Behavior of cyphenothrin in aquatic environment. J. Pestic. Sci. 42(2), 17-24.

 


Fipronil Sulfoxide Photoextrusion

Scheme:

Examples:

Fipronil (Ngim et al. 2000) (EFSA)

 

References:

Ngim, K.K., Mabury, S.A. and Crosby, D.G. 2000. Elucidation of fipronil photodegradation pathways. J. Agric. Food Chem. 48(10), 4661-4665.

 


Imidazolinone Amide Photoelimination

Scheme:

Examples:

Imazapic (Harir et al. 2007b)

Imazamox (Harir et al. 2007a)

 

References:

Harir, M., Frommberger, M., Gaspar, A., Martens, D., Kettrup, A., El Azzouzi, M. and Schmitt-Kopplin, P. 2007a. Characterization of imazamox degradation by-products by using liquid chromatography mass spectrometry and high-resolution fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 389(5), 1459-1467.

Harir, M., Gaspar, A., Frommberger, M., Lucio, M., Azzouzi, M.E., Martens, D., Kettrup, A. and Schmitt-Kopplin, P. 2007b. Photolysis pathway of imazapic in aqueous solution: Ultrahigh resolution mass spectrometry analysis of intermediates. J. Agric. Food Chem. 55(24), 9936-9943.

 


Imidazolinone Photodecarbonylation

Scheme:

Examples:

Imazamox (Christiansen et al. 2015)

Imazapic (Christiansen et al. 2015)

Imazaquin (Christiansen et al. 2015)

 

References:

Christiansen, A., Peterson, A., Anderson, S.C., Lass, R., Johnson, M. and Nienow, A.M. 2015. Analysis of the photodegradation of the imidazolinone herbicides imazamox, imazapic, imazaquin, and imazamethabenz-methyl in aqueous solution. J. Agric. Food Chem. 63(50), 10768-10777.

 


Nitroguanidine Photochemical N-denitration

Scheme:

Examples:

Nitroguanidine (Halasz et al. 2018)

Imidacloprid (Wamhoff and Schneider 1999) (EFSA)

 

References:

Halasz, A., Hawari, J. and Perreault, N.N. 2018. New insights into the photochemical degradation of the insensitive munition formulation imx-101 in water. Environ. Sci. Technol. 52(2), 589-596.

Wamhoff, H. and Schneider, V. 1999. Photodegradation of imidacloprid. J. Agric. Food Chem. 47(4), 1730-1734.

 


Nitrosamine N-N Photocleavage

Scheme:

Examples:

N-nitrosodimethylamine (Plumlee and Reinhard 2007)

 

References:

Plumlee, M.H. and Reinhard, M. 2007. Photochemical attenuation of n-nitrosodimethylamine (ndma) and other nitrosamines in surface water. Environ. Sci. Technol. 41(17), 6170-6176.

 


Phenoxyacetic Acid Photodecarboxylation

Scheme:

Examples:

Bezafibrate (Cermola et al. 2005)

fenofibric acid (Cermola et al. 2005)

 

References:

Cermola, M., DellaGreca, M., Iesce, M.R., Previtera, L., Rubino, M., Temussi, F. and Brigante, M. 2005. Phototransformation of fibrate drugs in aqueous media. Environ. Chem. Lett. 3(1), 43-47.

 


Phenoxyacetic Acid Photodecarboxylation to Carbonyl

Scheme:

Examples:

4-chlorophenoxyacetic acid (Crosby and Wong 1973)

2-naphthoxyacetic acid (Climent and Miranda 1997)

Dichlorprop (Climent and Miranda 1997)

 

References:

Climent, M.J. and Miranda, M.A. 1997. Photodegradation of dichlorprop and 2-naphthoxyacetic acid in water. Combined gc−ms and gc−ftir study. J. Agric. Food Chem. 45(5), 1916-1919.

Crosby, D.G. and Wong, A.S. 1973. Photodecomposition of p-chlorophenoxyacetic acid. J. Agric. Food Chem. 21(6), 1049-1052.

 


Pyrrolinone Photodecarbonylation

Scheme:

Examples:

Benoxacor photo-product (Kral et al. 2019)

 

References:

Kral, A.E., Pflug, N.C., McFadden, M.E., LeFevre, G.H., Sivey, J.D. and Cwiertny, D.M. 2019. Photochemical transformations of dichloroacetamide safeners. Environ. Sci. Technol. 53(12), 6738-6746.

 


RDX Photochemical N-denitration to Imine

Scheme:

Examples:

hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) (Hawari et al. 2002)

 

References:

Hawari, J., Halasz, A., Groom, C., Deschamps, S., Paquet, L., Beaulieu, C. and Corriveau, A. 2002. Photodegradation of rdx in aqueous solution:  A mechanistic probe for biodegradation with rhodococcus sp. Environ. Sci. Technol. 36(23), 5117-5123.

 


Sulfonamide SO2 Extrusion Photorearrangement (6-6)

Scheme:

An exclusion rule is included to ensure that no products with aromaticity/valence error are formed.

Examples:

Sulfamethazine (Boreen et al. 2005)

Sulfachloropyridazine (Boreen et al. 2005)

Sulfamerazine (Boreen et al. 2005)

 

References:

Boreen, A.L., Arnold, W.A. and McNeill, K. 2005. Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups:  Identification of an so2 extrusion photoproduct. Environ. Sci. Technol. 39(10), 3630-3638.

 


Photocyclization

Acetanilide Dehalogenative Photocyclization to Pyrrolinone

Scheme:

Examples:

Benoxacor (Kral et al. 2019)

 

References:

Kral, A.E., Pflug, N.C., McFadden, M.E., LeFevre, G.H., Sivey, J.D. and Cwiertny, D.M. 2019. Photochemical transformations of dichloroacetamide safeners. Environ. Sci. Technol. 53(12), 6738-6746.

 


Acetanilide O-dealkyl Dehalogenative Photocyclization to Morpholinone

Scheme:

Examples:

Metolachlor (Dimou et al. 2005)

Alachlor (Chiron et al. 1995)

Dimethenamid (EFSA)

 

References:

Chiron, S., Barceló, D., Abian, J., Ferrer, M., Sanchez-Baeza, F. and Messeguer, A. 1995. Comparative photodegradation rates of alachlor and bentazone in natural water and determination of breakdown products. Environ. Toxicol. Chem. 14(8), 1287-1298.

Dimou, A.D., Sakkas, V.A. and Albanis, T.A. 2005. Metolachlor photodegradation study in aqueous media under natural and simulated solar irradiation. J. Agric. Food Chem. 53(3), 694-701.

 


Altrenogest Photocycloaddition

Scheme:

Examples:

Altrenogest (Wammer et al. 2016)

 

References:

Wammer, K.H., Anderson, K.C., Erickson, P.R., Kliegman, S., Moffatt, M.E., Berg, S.M., Heitzman, J.A., Pflug, N.C., McNeill, K., Martinovic-Weigelt, D., Abagyan, R., Cwiertny, D.M. and Kolodziej, E.P. 2016. Environmental photochemistry of altrenogest: Photoisomerization to a bioactive product with increased environmental persistence via reversible photohydration. Environ. Sci. Technol. 50(14), 7480-7488.

 


Aminobenzophenone Photocyclization to Acridinone

Scheme:

A reactivity rule is included to ensure that no unreasonably fused products are formed by specifying that the shortest pathway between product atom 8 and 9 is 4 bonds.

Examples:

5-chloro-2-methylaminobenzophenone (West and Rowland 2012)

2-amino-5-chlorobenzophenone (West and Rowland 2012)

 

References:

West, C.E. and Rowland, S.J. 2012. Aqueous phototransformation of diazepam and related human metabolites under simulated sunlight. Environ. Sci. Technol. 46(9), 4749-4756.

 


Anthranilic Diamide Dehalogenative Photocyclization to Oxazine

Scheme:

Examples:

Chlorantraniliprole (Sharma et al. 2014) (EFSA)

Cyantraniliprole (Sharma et al. 2014) (EFSA)

 

References:

Sharma, A.K., Zimmerman, W.T., Singles, S.K., Malekani, K., Swain, S., Ryan, D., McQuorcodale, G. and Wardrope, L. 2014. Photolysis of chlorantraniliprole and cyantraniliprole in water and soil: Verification of degradation pathways via kinetics modeling. J. Agric. Food Chem. 62(28), 6577-6584.

 


Aromatic Ketone Norrish II Photocyclization (C1_C4)

Scheme:

A reactivity rule is included to constrain that the ketone side chain is not part of a ring by specifying the bond between reactant atom 2 and 3 being a chain bond.

Examples:

Valerophenone (Zepp et al. 1998)

 

References:

Zepp, R.G., Gumz, M.M., Miller, W.L. and Gao, H. 1998. Photoreaction of valerophenone in aqueous solution. The Journal of Physical Chemistry A 102(28), 5716-5723.

 


beta-Triketone Dehalogenative Photocyclization to Pyran

Scheme:

Examples:

Benzobicyclon hydrolysate (Williams et al. 2018)

Sulcotrione (ter Halle et al. 2008)

 

References:

ter Halle, A., Wiszniowski, J., Hitmi, A., Ledoigt, G., Bonnemoy, F., Bonnet, J.L., Bohatier, J. and Richard, C. 2008. Photolysis of the herbicide sulcotrione: Formation of a major photoproduct and its toxicity evaluation. Pest Manage. Sci. 65(1), 14-18.

Williams, K.L., Kaur, R., McFall, A.S., Kalbfleisch, J., Gladfelder, J.J., Ball, D.B., Anastasio, C. and Tjeerdema, R.S. 2018. Aqueous photolysis of benzobicyclon hydrolysate. J. Agric. Food Chem. 66(22), 5462-5472.

 


Diarylethene Photocyclization to Phenanthrene

Scheme:

A reactivity rule is included to ensure that no unreasonably fused products are formed by specifying that the shortest pathway between product atom 7 and 8 is 5 bonds.

Examples:

Tamoxifen (DellaGreca et al. 2007)

Atorvastatin photo-product (Cermola et al. 2006)

 

References:

Cermola, F., DellaGreca, M., Iesce, M.R., Montanaro, S., Previtera, L. and Temussi, F. 2006. Photochemical behavior of the drug atorvastatin in water. Tetrahedron 62(31), 7390-7395.

DellaGreca, M., Iesce, M.R., Isidori, M., Nardelli, A., Previtera, L. and Rubino, M. 2007. Phototransformation products of tamoxifen by sunlight in water. Toxicity of the drug and its derivatives on aquatic organisms. Chemosphere 67(10), 1933-1939.

 


Diarylethene Photocyclization to Phenanthrene (E isomer)

Scheme:

A reactivity rule is included to ensure that no unreasonably fused products are formed by specifying that the shortest pathway between product atom 7 and 8 is 5 bonds.

Examples:

Diethylstilbestrol (Xu et al. 2017)

Tamoxifen (DellaGreca et al. 2007)

 

References:

DellaGreca, M., Iesce, M.R., Isidori, M., Nardelli, A., Previtera, L. and Rubino, M. 2007. Phototransformation products of tamoxifen by sunlight in water. Toxicity of the drug and its derivatives on aquatic organisms. Chemosphere 67(10), 1933-1939.

Xu, B., Li, K., Qiao, J., Liungai, Z., Chen, C. and Lu, Y. 2017. Uv photoconversion of environmental oestrogen diethylstilbestrol and its persistence in surface water under sunlight. Water Res. 127, 77-85.

 


Dinitroaniline Photocyclization to Benzimidazole (NOHOH)

Scheme:

 

Dinitroaniline Photocyclization to Benzimidazole (NOHOH to NO)

Scheme:

Dinitroaniline Photocyclization to Benzimidazole (NO to N)

Scheme:

Because of a software bug in Metabolizer, a direct cyclization reaction cannot be performed on dinitroaniline compounds. Therefore, three sequential/consecutive reaction schemes were created to perform the overall cyclization reaction. The following examples are for any of the three schemes or their combinations.

 

Examples:

Trifluralin (Leitis and Crosby 1974, Tagle et al. 2005)

Trifluralin (Leitis and Crosby 1974)

2-ethyl-4-nitro-3-propyl-6-(trifluoromethyl)-1,3-benzodiazole-1,2-diol (Leitis and Crosby 1974)

Trifluralin photo-product (Tagle et al. 2005)

Benfluralin (EFSA)

Benfluralin (EFSA)

The product is formed by the reaction scheme along with other transformations.

Ethalfluraline (EFSA)

The product is formed by the reaction scheme along with other transformations.

Ethalfluraline (EFSA)

The product is formed by the reaction scheme along with other transformations.

Flumetralin (EFSA)

The products are formed by the reaction scheme along with other transformations.

Oryzalin (EFSA)

The product is formed by the reaction scheme along with other transformations.

 

References:

Leitis, E. and Crosby, D.G. 1974. Photodecomposition of trifluralin. J. Agric. Food Chem. 22(5), 842-848.

Tagle, M.G.S., Laura Salum, M., Bujan, E.I. and Arguello, G.A. 2005. Time evolution and competing pathways in photodegradation of trifluralin and three of its major degradation products. Photochemical & Photobiological Sciences 4(11), 869-875.

 


Diphenylamine Photocyclization to Carbazole

Scheme:

A reactivity rule is included to ensure that no unreasonably fused products are formed by specifying that the shortest path between product atom 1 and 7 is 4 bonds. An exclusion rule is included to exclude the amide functional group at reactant atom 13.

Examples:

Diphenylamine (Sur et al. 2000) (EFSA)

 

References:

Sur, D., Purkayastha, P. and Chattopadhyay, N. 2000. Kinetics of the photoconversion of diphenylamine in β-cyclodextrin environments. J. Photochem. Photobiol. A: Chem. 134(1), 17-21.


Diphenylamine Dehalogenative Photocyclization to Carbazole

Scheme:

A reactivity rule is included to ensure that no unreasonably fused products are formed by specifying that the shortest path between product atom 1 and 7 is 4 bonds. An exclusion rule is included to exclude the amide functional group at reactant atom 13.

Examples:

Diclofenac (Poiger et al. 2001)

 

References:

Poiger, T., Buser, H.-R. and Müller, M.D. 2001. Photodegradation of the pharmaceutical drug diclofenac in a lake: Pathway, field measurements, and mathematical modeling. Environ. Toxicol. Chem. 20(2), 256-263.

 


Fluoroquinolone Defluorinative Photocyclization

Scheme:

Examples:

Lomefloxacin (Fasani et al. 1999)

 

References:

Fasani, E., Barberis Negra, F.F., Mella, M., Monti, S. and Albini, A. 1999. Photoinduced c−f bond cleavage in some fluorinated 7-amino-4-quinolone-3-carboxylic acids. The Journal of Organic Chemistry 64(15), 5388-5395.


Lamotrigine Photocyclization to Carbazole

Scheme:

Examples:

Lamotrigine (Young et al. 2014)

 

References:

Young, R.B., Chefetz, B., Liu, A., Desyaterik, Y. and Borch, T. 2014. Direct photodegradation of lamotrigine (an antiepileptic) in simulated sunlight - ph influenced rates and products. Environmental Science: Processes & Impacts 16(4), 848-857.

 


Lamotrigine Dehalogenative Photocyclization to Carbazole

Scheme:

Examples:

Lamotrigine (Young et al. 2014)

 

References:

Young, R.B., Chefetz, B., Liu, A., Desyaterik, Y. and Borch, T. 2014. Direct photodegradation of lamotrigine (an antiepileptic) in simulated sunlight - ph influenced rates and products. Environmental Science: Processes & Impacts 16(4), 848-857.

 


o-Vinylbiphenyl Photocyclization to Dihydrophenanthrene

Scheme:

A reactivity rule is included to ensure that no unreasonably fused products are formed by specifying that the shortest path between product atom 8 and 9 is 3 bonds.

Examples:

Fluvastatin (Jarmużek et al. 2017)

Rosuvastatin (Astarita et al. 2007)

 

References:

Astarita, A., DellaGreca, M., Iesce, M.R., Montanaro, S., Previtera, L. and Temussi, F. 2007. Polycyclic compounds by sunlight exposure of the drug rosuvastatin in water. J. Photochem. Photobiol. A: Chem. 187(2), 263-268.

Jarmużek, D., Pedzinski, T., Hoffmann, M., Siodła, T., Salus, K. and Pluskota-Karwatka, D. 2017. Experimental and theoretical studies on fluvastatin primary photoproduct formation. PCCP 19(33), 21946-21954.

 


Phenoxyphenol Dehalogenative Photocyclization to Dioxin

Scheme:

A reactivity rule is included to ensure that no unreasonably fused products are formed by specifying that the shortest pathway between product atom 3 and 12 is 4 bonds.

Examples:

Triclosan (Latch et al. 2003)

6-OH-PBDE 99 (Erickson et al. 2012)

6-Cl-triclosan (Buth et al. 2009)

3-Cl-6-OH PBDE 47 (Steen et al. 2009)

2’-HO PBDE 28 (Zhang et al. 2016)

 

References:

Buth, J.M., Grandbois, M., Vikesland, P.J., McNeill, K. and Arnold, W.A. 2009. Aquatic photochemistry of chlorinated triclosan derivatives: Potential source of polychlorodibenzo-p-dioxins. Environ. Toxicol. Chem. 28(12), 2555-2563.

Erickson, P.R., Grandbois, M., Arnold, W.A. and McNeill, K. 2012. Photochemical formation of brominated dioxins and other products of concern from hydroxylated polybrominated diphenyl ethers (oh-pbdes). Environ. Sci. Technol. 46(15), 8174-8180.

Latch, D.E., Packer, J.L., Arnold, W.A. and McNeill, K. 2003. Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. J. Photochem. Photobiol. A: Chem. 158(1), 63-66.

Steen, P.O., Grandbois, M., McNeill, K. and Arnold, W.A. 2009. Photochemical formation of halogenated dioxins from hydroxylated polybrominated diphenyl ethers (oh-pbdes) and chlorinated derivatives (oh-pbcdes). Environ. Sci. Technol. 43(12), 4405-4411.

Zhang, Y.-n., Xie, Q., Sun, G., Yang, K., Song, S., Chen, J., Zhou, C. and Li, Y. 2016. Effects of dissolved organic matter on phototransformation rates and dioxin products of triclosan and 2-ho-bde-28 in estuarine water. Environmental Science: Processes & Impacts 18(9), 1177-1184.

 


Photochemical Ring Contraction

Zepine Photochemical Ring Contraction to Acridine

Scheme:

Examples:

Carbamazepine (De Laurentiis et al. 2012)

Desipramine photo-product (Gros et al. 2015)

 

References:

De Laurentiis, E., Chiron, S., Kouras-Hadef, S., Richard, C., Minella, M., Maurino, V., Minero, C. and Vione, D. 2012. Photochemical fate of carbamazepine in surface freshwaters: Laboratory measures and modeling. Environ. Sci. Technol. 46(15), 8164-8173.

Gros, M., Williams, M., Llorca, M., Rodriguez-Mozaz, S., Barceló, D. and Kookana, R.S. 2015. Photolysis of the antidepressants amisulpride and desipramine in wastewaters: Identification of transformation products formed and their fate. Sci. Total Environ. 530-531, 434-444.

 


Photohydrolysis

Aromatic Amine Photohydrolysis

Scheme:

A relative reasoning exclusion rule is included by specifying that reactant atom 4 is not connected to a sulfonamide functional group.

Examples:

2-chloro-4-nitroaniline (McConville et al. 2016)

4-amino-3-trifluoromethylphenol (Ellis and Mabury 2000)

The product is formed by the reaction scheme along with other transformations.

Penoxsulam photo-product (EFSA)

 

References:

Ellis, D.A. and Mabury, S.A. 2000. The aqueous photolysis of tfm and related trifluoromethylphenols. An alternate source of trifluoroacetic acid in the environment. Environ. Sci. Technol. 34(4), 632-637.

McConville, M.B., Hubert, T.D. and Remucal, C.K. 2016. Direct photolysis rates and transformation pathways of the lampricides tfm and niclosamide in simulated sunlight. Environ. Sci. Technol. 50(18), 9998-10006.

 


Aromatic Carbamate Photohydrolysis

Scheme:

A reactivity rule is included to ensure that at least one of the reactant atom 1 and 4 is aromatic.

Examples:

Phenisopham (Passananti et al. 2014)

Pirimicarb (Pirisi et al. 1996) (EFSA)

Carbaryl (Brahmia and Richard 2003)

Diethofencarb (EFSA)

 

References:

Brahmia, O. and Richard, C. 2003. Phototransformation of carbaryl in aqueous solution: Laser-flash photolysis and steady-state studies. J. Photochem. Photobiol. A: Chem. 156(1), 9-14.

Passananti, M., Lavorgna, M., Iesce, M.R., DellaGreca, M., Criscuolo, E., Parrella, A., Isidori, M. and Temussi, F. 2014. Chlorpropham and phenisopham: Phototransformation and ecotoxicity of carbamates in the aquatic environment. Environmental Science: Processes & Impacts 16(4), 823-831.

Pirisi, F.M., Cabras, P., Garau, V.L., Melis, M. and Secchi, E. 1996. Photodegradation of pesticides. Photolysis rates and half-life of pirimicarb and its metabolites in reactions in water and in solid phase. J. Agric. Food Chem. 44(8), 2417-2422.

 


Aromatic Ether Photohydrolysis

Scheme:                  

A reactivity rule is included to specify that reactant atom 3 is a chain atom. An exclusion rule is included to exclude the carboxylic acid ester functional group by specifying that reactant atom 2 is not a carbonyl carbon.

Examples:

Fluoxetine (Lam et al. 2005)

Oxyfluorfen (Ying and Williams 1999)

The product is formed by the reaction scheme along with other transformations.

4-chlorophenoxyacetic acid (Crosby and Wong 1973)

2,4-dichlorophenoxyacetic acid (Crosby and Tutass 1966)

Bezafibrate (Cermola et al. 2005)

2,4-dinitroanisole (Halasz et al. 2018)

Mecoprop (Meunier and Boule 2000)

Triasulfuron (Vulliet et al. 2002)

Penoxsulam photo-product (Jabusch and Tjeerdema 2006)

Napropamide (Aguer et al. 1998)

fenoxaprop-p-ethyl (EFSA)

pyriproxyfen (EFSA)

Fenazaquin (EFSA)

 

References:

Aguer, J.P., Boule, P., Bonnemoy, F. and Chezal, J.M. 1998. Phototransformation of napropamide [n,n-diethyl-2-(1-naphthyloxy)propionamide] in aqueous solution: Influence on the toxicity of solutions. Pestic. Sci. 54(3), 253-257.

Cermola, M., DellaGreca, M., Iesce, M.R., Previtera, L., Rubino, M., Temussi, F. and Brigante, M. 2005. Phototransformation of fibrate drugs in aqueous media. Environ. Chem. Lett. 3(1), 43-47.

Crosby, D.G. and Tutass, H.O. 1966. Photodecomposition of 2,4-dichlorophenoxyacetic acid. J. Agric. Food Chem. 14(6), 596-599.

Crosby, D.G. and Wong, A.S. 1973. Photodecomposition of p-chlorophenoxyacetic acid. J. Agric. Food Chem. 21(6), 1049-1052.

Halasz, A., Hawari, J. and Perreault, N.N. 2018. New insights into the photochemical degradation of the insensitive munition formulation imx-101 in water. Environ. Sci. Technol. 52(2), 589-596.

Jabusch, T.W. and Tjeerdema, R.S. 2006. Photodegradation of penoxsulam. J. Agric. Food Chem. 54(16), 5958-5961.

Lam, M.W., Young, C.J. and Mabury, S.A. 2005. Aqueous photochemical reaction kinetics and transformations of fluoxetine. Environ. Sci. Technol. 39(2), 513-522.

Meunier, L. and Boule, P. 2000. Direct and induced phototransformation of mecoprop [2(4chloro2methylphenoxy)propionic acid] in aqueous solution. Pest Manage. Sci. 56(12), 1077-1085.

Vulliet, E., Emmelin, C., Grenier-Loustallot, M.F., Païssé, O. and Chovelon, J.M. 2002. Simulated sunlight-induced photodegradations of triasulfuron and cinosulfuron in aqueous solutions. J. Agric. Food Chem. 50(5), 1081-1088.

Ying, G.G. and Williams, B. 1999. The degradation of oxadiazon and oxyfluorfen by photolysis. Journal of Environmental Science and Health, Part B 34(4), 549-567.

 


Aromatic Halide Photohydrolysis

Scheme:

An exclusion rule is added to differentiate this scheme from “Fluoroquinolone Fluoride Photohydrolysis” by specifying that reactant atom 1 is not part of a quinolone functional group.

A relative reasoning exclusion rule is included by specifying that reactant atom 1 is not connected to a benzoylphenylurea functional group.

Examples:

Chlorpropham (Passananti et al. 2014)

Niclosamide photo-product (McConville et al. 2016)

Niclosamide photo-product (McConville et al. 2016)

2-chloro-5-trifluoromethylphenol (Young et al. 2008)

iodosulfuron-methyl (Brigante et al. 2005)

Metoxuron (Boulkamh et al. 2001)

Diuron (Jirkovský et al. 1997)

Linuron (Rosen et al. 1969)

Monuron (Rosen et al. 1969)

Metobromuron (Rosen and Strusz 1968)

Atrazine (Torrents et al. 1997)

Des-ethyl atrazine (Torrents et al. 1997)

Chlorpropham (Guzik 1978)

Terbuthylazine (EFSA)

6-chlorobenzoxazolon (a metabolite of fenoxaprop-p-ethyl) (EFSA report on fenoxaprop-p-ethyl)

Bromoxynil (Machado et al. 1995)

Trazodone (DellaGreca et al. 2008)

Profenofos (Zamy et al. 2004)

Diclofenac photo-product (Eriksson et al. 2010)

Sarafloxacin (Ge et al. 2010)

Atorvastatin (Lam and Mabury 2005)

 

References:

Boulkamh, A., Harakat, D., Sehili, T. and Boule, P. 2001. Phototransformation of metoxuron [3-(3-chloro-4-methoxyphenyl)-1,1-dimethylurea] in aqueous solution. Pest Manage. Sci. 57(12), 1119-1126.

Brigante, M., Emmelin, C., Previtera, L., Baudot, R. and Chovelon, J.M. 2005. Abiotic degradation of iodosulfuron-methyl-ester in aqueous solution. J. Agric. Food Chem. 53(13), 5347-5352.

DellaGreca, M., Iesce, M.R., Previtera, L., Rubino, M., Barone, V. and Crescenzi, O. 2008. Phototransformation of the drug trazodone in aqueous solution. J. Photochem. Photobiol. A: Chem. 199(2), 353-357.

Eriksson, J., Svanfelt, J. and Kronberg, L. 2010. A photochemical study of diclofenac and its major transformation products. Photochem. Photobiol. 86(3), 528-532.

Ge, L., Chen, J., Wei, X., Zhang, S., Qiao, X., Cai, X. and Xie, Q. 2010. Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents. Environ. Sci. Technol. 44(7), 2400-2405.

Guzik, F.F. 1978. Photolysis of isopropyl 3-chlorocarbanilate in water. J. Agric. Food Chem. 26(1), 53-55.

Jirkovský, J., Faure, V. and Boule, P. 1997. Photolysis of diuron. Pestic. Sci. 50(1), 42-52.

Lam, M.W. and Mabury, S.A. 2005. Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. Aquat. Sci. 67(2), 177-188.

Machado, F., Collin, L. and Boule, P. 1995. Photolysis of bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) in aqueous solution. Pestic. Sci. 45(2), 107-110.

McConville, M.B., Hubert, T.D. and Remucal, C.K. 2016. Direct photolysis rates and transformation pathways of the lampricides tfm and niclosamide in simulated sunlight. Environ. Sci. Technol. 50(18), 9998-10006.

Passananti, M., Lavorgna, M., Iesce, M.R., DellaGreca, M., Criscuolo, E., Parrella, A., Isidori, M. and Temussi, F. 2014. Chlorpropham and phenisopham: Phototransformation and ecotoxicity of carbamates in the aquatic environment. Environmental Science: Processes & Impacts 16(4), 823-831.

Rosen, J.D. and Strusz, R.F. 1968. Photolysis of 3-(p-bromophenyl)-1-methoxy-1-methylurea. J. Agric. Food Chem. 16(4), 568-570.

Rosen, J.D., Strusz, R.F. and Still, C.C. 1969. Photolysis of phenylurea herbicides. J. Agric. Food Chem. 17(2), 206-207.

Torrents, A., Anderson, B.G., Bilboulian, S., Johnson, W.E. and Hapeman, C.J. 1997. Atrazine photolysis:  Mechanistic investigations of direct and nitrate-mediated hydroxy radical processes and the influence of dissolved organic carbon from the chesapeake bay. Environ. Sci. Technol. 31(5), 1476-1482.

Young, C., J., Gómez Biagi, R., F., Hurley, M., D., Wallington, T., J. and Mabury, S., A. 2008. Paint solvent to food additive: An environmental route of dehalogenation for 4chlorobenzotrifluoride. Environ. Toxicol. Chem. 27(11), 2233-2238.

Zamy, C., Mazellier, P. and Legube, B. 2004. Phototransformation of selected organophosphorus pesticides in dilute aqueous solutions. Water Res. 38(9), 2305-2314.

 


Aromatic Nitro Photohydrolysis

Scheme:

Two relative reasoning exclusion rules are included by specifying (1) reactant atom 1 is not part of a dinitroaniline functional group and (2) reactant atom 1 is not part of a nitrofuran imine functional group. 

Examples:

3-trifluoromethyl-4-nitrophenol (McConville et al. 2016)

4-nitrocatechol (McConville et al. 2016)

Oxyfluorfen (Ying and Williams 1999) (EFSA)

Parathion-methyl (Araújo et al. 2013)

2,4-dinitroanisole (Halasz et al. 2018)

2,4-dinitrophenol (Hawari et al. 2015)

3‐nitro‐4,5‐dihydro‐1H‐1,2,4‐triazol‐5‐one (NTO) (Halasz et al. 2018)

Nitrofuraldehyde (Edhlund et al. 2006)

 

References:

Araújo, T.M.R., Canela, M.C. and Miranda, P.C.M.L. 2013. Photochemical nitro-nitrite rearrangement in methyl parathion decay under tropical conditions. Journal of Environmental Science and Health, Part B 48(4), 251-259.

Edhlund, B.L., Arnold, W.A. and McNeill, K. 2006. Aquatic photochemistry of nitrofuran antibiotics. Environ. Sci. Technol. 40(17), 5422-5427.

Halasz, A., Hawari, J. and Perreault, N.N. 2018. New insights into the photochemical degradation of the insensitive munition formulation imx-101 in water. Environ. Sci. Technol. 52(2), 589-596.

Hawari, J., Monteil-Rivera, F., Perreault, N.N., Halasz, A., Paquet, L., Radovic-Hrapovic, Z., Deschamps, S., Thiboutot, S. and Ampleman, G. 2015. Environmental fate of 2,4-dinitroanisole (dnan) and its reduced products. Chemosphere 119, 16-23.

McConville, M.B., Hubert, T.D. and Remucal, C.K. 2016. Direct photolysis rates and transformation pathways of the lampricides tfm and niclosamide in simulated sunlight. Environ. Sci. Technol. 50(18), 9998-10006.

Ying, G.G. and Williams, B. 1999. The degradation of oxadiazon and oxyfluorfen by photolysis. Journal of Environmental Science and Health, Part B 34(4), 549-567.

 


Aromatic Sulfonate Photohydrolysis

Scheme:

Examples:

5‐(dimethylsulfamoyl)‐2‐methylquinolin‐8‐yl benzenesulfonate (Kageyama et al. 2009)

naphthalen‐1‐yl benzenesulfonate (Kageyama et al. 2009)

Bupirimate (EFSA)

5-(dimethylsulfamoyl)-2-methylquinolin-8-yl methanesulfonate (Kageyama et al. 2009)

 

References:

Kageyama, Y., Ohshima, R., Sakurama, K., Fujiwara, Y., Tanimoto, Y., Yamada, Y. and Aoki, S. 2009. Photochemical cleavage reactions of 8-quinolinyl sulfonates in aqueous solution. Chem. Pharm. Bull. 57(11), 1257-1266.

 


Benzoylphenylurea Amide Photohydrolysis

Scheme:

Examples:

Diflubenzuron (Mabury and Crosby 1996) (only the second product) (EFSA) (both products)

1-(2-chlorobenzoyl)-3-(4-chlorophenyl) urea (Liu et al. 2001)

 

References:

Liu, G., Jiang, X. and Xu, X. 2001. Photodegradation of 1-(2-chlorobenzoyl)-3-(4-chlorophenyl) urea in different media and toxicity of its reaction products. J. Agric. Food Chem. 49(5), 2359-2362.

Mabury, S.A. and Crosby, D.G. 1996. Fate and disposition of diflubenzuron in rice fields. Environ. Toxicol. Chem. 15(11), 1908-1913.


Benzoylphenylurea Urea Photohydrolysis

Scheme:

Examples:

Flufenoxuron (EFSA)

Lufenuron (EFSA)

novaluron (EFSA)

Triflumuron (EFSA)

1-(2-chlorobenzoyl)-3-(4-chlorophenyl) urea (Liu et al. 2001)

 

References:

Liu, G., Jiang, X. and Xu, X. 2001. Photodegradation of 1-(2-chlorobenzoyl)-3-(4-chlorophenyl) urea in different media and toxicity of its reaction products. J. Agric. Food Chem. 49(5), 2359-2362.

 


beta-Triketone alpha Photocleavage to Carboxylic Acid

Scheme:

Examples:

Benzobicyclon hydrolysate (Williams et al. 2018)

Sulcotrione (ter Halle et al. 2008) (EFSA)

Mesotrione (ter Halle and Richard 2006)

 

References:

ter Halle, A. and Richard, C. 2006. Simulated solar light irradiation of mesotrione in natural waters. Environ. Sci. Technol. 40(12), 3842-3847.

ter Halle, A., Wiszniowski, J., Hitmi, A., Ledoigt, G., Bonnemoy, F., Bonnet, J.L., Bohatier, J. and Richard, C. 2008. Photolysis of the herbicide sulcotrione: Formation of a major photoproduct and its toxicity evaluation. Pest Manage. Sci. 65(1), 14-18.

Williams, K.L., Kaur, R., McFall, A.S., Kalbfleisch, J., Gladfelder, J.J., Ball, D.B., Anastasio, C. and Tjeerdema, R.S. 2018. Aqueous photolysis of benzobicyclon hydrolysate. J. Agric. Food Chem. 66(22), 5462-5472.

 


Diphenyl Ether Photohydrolysis

Scheme:

A reactivity is included to specify that reactant atom 3 is not part of a ring. A selectivity rule is included to avoid duplication of products for symmetric reactant by specifying that reactant atom 1 needs to be the more sterically hindered atom compared to atom 2. An exclusion rule is included to exclude reactants susceptible to “Phenoxylphenol Ether Photocleavage” by specifying that reactant atom 1 or 2 is not part of a phenoxyphenol functional group.

Examples:

Nitrofen (Nakagawa and Crosby 1974)

Acifluorfen (Vialaton et al. 2001)

Permethrin photo-product (3-phenoxybenzyl alcohol) (Holmstead et al. 1978)

3-phenoxybenzoic acid (Katagi 1992)

Flufenoxuron (EFSA)

Azoxystrobin (Boudina et al. 2007)

Fenoxycarb (EFSA)

Levothyroxine (Svanfelt et al. 2011)

Bifenox (EFSA)

haloxyfop-P (EFSA)

References:

Boudina, A., Emmelin, C., Baaliouamer, A., Païssé, O. and Chovelon, J.M. 2007. Photochemical transformation of azoxystrobin in aqueous solutions. Chemosphere 68(7), 1280-1288.

Holmstead, R.L., Casida, J.E., Ruzo, L.O. and Fullmer, D.G. 1978. Pyrethroid photodecomposition: Permethrin. J. Agric. Food Chem. 26(3), 590-595.

Katagi, T. 1992. Photodegradation of 3-phenoxybenzoic acid in water and on solid surfaces. J. Agric. Food Chem. 40(7), 1269-1274.

Nakagawa, M. and Crosby, D.G. 1974. Photodecomposition of nitrofen. J. Agric. Food Chem. 22(5), 849-853.

Svanfelt, J., Eriksson, J. and Kronberg, L. 2011. Photochemical transformation of the thyroid hormone levothyroxine in aqueous solution. Environmental Science and Pollution Research 18(6), 871-876.

Vialaton, D., Baglio, D., Paya-Perez, A. and Richard, C. 2001. Photochemical transformation of acifluorfen under laboratory and natural conditions. Pest Manage. Sci. 57(4), 372-379.

 


Fluoroquinolone Fluoride Photohydrolysis

Scheme:

Two exclusion rules are included (1) to exclude halogen substitution at reactant atom 8 and (2) to exclude molecules with a lower electrophilicity at atom 6 than norfloxacin. The electrophilicity of a specific unsaturated atom is calculated using ChemAxon’s Huckel analysis plugin.

Examples:

Ciprofloxacin (Baena-Nogueras et al. 2017)

Enoxacin (Fasani et al. 1999)

Lomefloxacin (Fasani et al. 1999)

Flumequine (Sirtori et al. 2012)

The product is formed by the reaction scheme along with other transformations.

 

References:

Baena-Nogueras, R.M., González-Mazo, E. and Lara-Martín, P.A. 2017. Photolysis of antibiotics under simulated sunlight irradiation: Identification of photoproducts by high-resolution mass spectrometry. Environ. Sci. Technol. 51(6), 3148-3156.

Fasani, E., Barberis Negra, F.F., Mella, M., Monti, S. and Albini, A. 1999. Photoinduced c−f bond cleavage in some fluorinated 7-amino-4-quinolone-3-carboxylic acids. The Journal of Organic Chemistry 64(15), 5388-5395.

Sirtori, C., Zapata, A., Gernjak, W., Malato, S. and Agüera, A. 2012. Photolysis of flumequine: Identification of the major phototransformation products and toxicity measures. Chemosphere 88(5), 627-634.

 


N-aryl Amide Photohydrolysis

Scheme:

The bond between atom 3 and 5 is single/aromatic.

Examples:

Niclosamide (McConville et al. 2016)

Flutolanil (Lam et al. 2005)

Metolachlor (Wilson and Mabury 2000)

Sedaxane (EFSA)

Isopyrazam (EFSA)

Propanil (Moilanen and Crosby 1972)

Indomethacin photo-product (Temussi et al. 2011)

 

References:

Lam, M.W., Young, C.J. and Mabury, S.A. 2005. Aqueous photochemical reaction kinetics and transformations of fluoxetine. Environ. Sci. Technol. 39(2), 513-522.

McConville, M.B., Hubert, T.D. and Remucal, C.K. 2016. Direct photolysis rates and transformation pathways of the lampricides tfm and niclosamide in simulated sunlight. Environ. Sci. Technol. 50(18), 9998-10006.

Moilanen, K.W. and Crosby, D.G. 1972. Photodecomposition of 3',4'-dichloropropionanilide (propanil). J. Agric. Food Chem. 20(5), 950-953.

Temussi, F., Cermola, F., DellaGreca, M., Iesce, M.R., Passananti, M., Previtera, L. and Zarrelli, A. 2011. Determination of photostability and photodegradation products of indomethacin in aqueous media. J. Pharm. Biomed. Anal. 56(4), 678-683.

Wilson, R.I. and Mabury, S.A. 2000. Photodegradation of metolachlor:  Isolation, identification, and quantification of monochloroacetic acid. J. Agric. Food Chem. 48(3), 944-950.

 


Nitrofuran Imine Photohydrolysis

Scheme:

Examples:

Furaltadone (Edhlund et al. 2006)

syn-Furazolidone (Edhlund et al. 2006)

anti-Furazolidone (Edhlund et al. 2006)

Nitrofurantoin (Edhlund et al. 2006)

 

References:

Edhlund, B.L., Arnold, W.A. and McNeill, K. 2006. Aquatic photochemistry of nitrofuran antibiotics. Environ. Sci. Technol. 40(17), 5422-5427.

 


Nitroguanidine Imine Photohydrolysis

Scheme:

 

An exclusion rule is included to exclude the exact chemical of nitroguanidine.

Examples:

Imidacloprid (Moza et al. 1998)

Thiamethoxam (Todey et al. 2018)

Clothianidin (Mulligan et al. 2015)

 

 

References:

Moza, P.N., Hustert, K., Feicht, E. and Kettrup, A. 1998. Photolysis of imidacloprid in aqueous solution. Chemosphere 36(3), 497-502.

Mulligan, R.A., Redman, Z.C., Keener, M.R., Ball, D.B. and Tjeerdema, R.S. 2015. Photodegradation of clothianidin under simulated california rice field conditions. Pest Manage. Sci. 72(7), 1322-1327.

Todey, S.A., Fallon, A.M. and Arnold, W.A. 2018. Neonicotinoid insecticide hydrolysis and photolysis: Rates and residual toxicity. Environ. Toxicol. Chem. 37(11), 2797-2809.

 


Nitroguanidine Nitro Photohydrolysis

Scheme:

Examples:

Nitroguanidine (Haag et al. 1990)

 

References:

Haag, W.R., Spanggord, R., Mill, T., Podoll, R.T., Chou, T.-W., Tse, D.S. and Harper, J.C. 1990. Aquatic environmental fate of nitroguanidine. Environ. Toxicol. Chem. 9(11), 1359-1367.

 


Organophosphorus Ester Photohydrolysis

Rule

Examples:

Parathion-methyl (Weber et al. 2009)

Fenitrothion (Weber et al. 2009)

Fenthion (Hirahara et al. 2003, Torrisi and Sortino 2004)

Butamifos (Katagi 1993)

4-nitro butamifos photo-product (Katagi 1993)

Isofenfos (Zamy et al. 2004)

Profenofos (Zamy et al. 2004)

pirimiphos-methyl (EFSA)

 

References:

Hirahara, Y., Ueno, H. and Nakamuro, K. 2003. Aqueous photodegradation of fenthion by ultraviolet b irradiation: Contribution of singlet oxygen in photodegradation and photochemical hydrolysis. Water Res. 37(2), 468-476.

Katagi, T. 1993. Photochemistry of organophosphorus herbicide butamifos. J. Agric. Food Chem. 41(3), 496-501.

Torrisi, S. and Sortino, S. 2004. New insights into the photoreactivity of the organophosphorus pesticide fenthion:  A σ aryl cation as a key intermediate in the photodecomposition. J. Agric. Food Chem. 52(19), 5943-5949.

Weber, J., Kurková, R., Klánová, J., Klán, P. and Halsall, C.J. 2009. Photolytic degradation of methyl-parathion and fenitrothion in ice and water: Implications for cold environments. Environ. Pollut. 157(12), 3308-3313.

Zamy, C., Mazellier, P. and Legube, B. 2004. Phototransformation of selected organophosphorus pesticides in dilute aqueous solutions. Water Res. 38(9), 2305-2314.

 


Pyrethroid Carboxylic Acid Ester Photohydrolysis

Scheme:

Examples:

Permethrin (Holmstead et al. 1978)

Metofluthrin (Nishiyama et al. 2010)

 

References:

Holmstead, R.L., Casida, J.E., Ruzo, L.O. and Fullmer, D.G. 1978. Pyrethroid photodecomposition: Permethrin. J. Agric. Food Chem. 26(3), 590-595.

Nishiyama, M., Suzuki, Y. and Katagi, T. 2010. Hydrolysis and photolysis of insecticide metofluthrin in water. J. Pestic. Sci. 35(4), 447-455.

 


Pyrrolinone Halide Photohydrolysis

Scheme:

Examples:

Benoxacor photo-product (Kral et al. 2019)

 

References:

Kral, A.E., Pflug, N.C., McFadden, M.E., LeFevre, G.H., Sivey, J.D. and Cwiertny, D.M. 2019. Photochemical transformations of dichloroacetamide safeners. Environ. Sci. Technol. 53(12), 6738-6746.

 


Sulfonamide Photohydrolysis

Scheme:

The bond between atom 4 and 6 is single/aromatic.

Three exclusion rules are included (1) to exclude certain 4-nitro/4-nitroso sulfonamide functional group (such as 4-nitro sulfamethoxazole), (2) to exclude sulfonamides which have 6-membered ring in both atom 1 and atom 6, and (3) to exclude reactants susceptible to “sulfonylurea” related reaction schemes by specifying that reactant atom 6 is not a urea carbon.

A relative reasoning exclusion rule is included by specifying that reactant atom 1 is not part of an aromatic sulfonate functional group.

Examples:

Sulfamethoxazole (Boreen et al. 2004)

Sulfisoxazole (Boreen et al. 2004)

Sulfamethizole (Boreen et al. 2004)

Sulfathiazole (Boreen et al. 2004)

4-nitroso sulfamethoxazole (Bonvin et al. 2013)

4-nitro sulfamethoxazole (Bonvin et al. 2013)

Penoxsulam (EFSA)

Pyroxsulam (EFSA)

Florasulam (Krieger et al. 2000) (EFSA)

Amisulbrom (EFSA)

Argatroban (Secrétan et al. 2016)

 

 

References:

Bonvin, F., Omlin, J., Rutler, R., Schweizer, W.B., Alaimo, P.J., Strathmann, T.J., McNeill, K. and Kohn, T. 2013. Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: Evidence for abiotic back-transformation. Environ. Sci. Technol. 47(13), 6746-6755.

Boreen, A.L., Arnold, W.A. and McNeill, K. 2004. Photochemical fate of sulfa drugs in the aquatic environment:  Sulfa drugs containing five-membered heterocyclic groups. Environ. Sci. Technol. 38(14), 3933-3940.

Krieger, M.S., Yoder, R.N. and Gibson, R. 2000. Photolytic degradation of florasulam on soil and in water. J. Agric. Food Chem. 48(8), 3710-3717.

Secrétan, P.-H., Karoui, M., Bernard, M., Ghermani, N., Safta, F., Yagoubi, N. and Do, B. 2016. Photodegradation of aqueous argatroban investigated by lc/msn: Photoproducts, transformation processes and potential implications. J. Pharm. Biomed. Anal. 131, 223-232.

 


Sulfonamide S-C Photohydrolysis

Scheme:

Two exclusion rules are included (1) to exclude certain 4-nitro sulfonamide functional group (such as 4-nitro sulfamethoxazole) and (2) to exclude reactants susceptible to “sulfonylurea” related reaction schemes by specifying that reactant atom 6 is not a urea carbon.

A relative reasoning exclusion rule is included by specifying that reactant atom 1 is not part of an aromatic sulfonate functional group.

Examples:

Sulfadimethoxine (Guerard et al. 2009)

Sulfamethoxazole (Bonvin et al. 2013)

N-acetyl sulfamethoxazole (Bonvin et al. 2013)

 

4-nitroso sulfamethoxazole (Bonvin et al. 2013)

sulfamethoxazole glucuronide (Bonvin et al. 2013)

Penoxsulam (Jabusch and Tjeerdema 2006)

Argatroban (Secrétan et al. 2016)

4-nitro sulfamethoxazole (Bonvin et al. 2013)

 

References:

Bonvin, F., Omlin, J., Rutler, R., Schweizer, W.B., Alaimo, P.J., Strathmann, T.J., McNeill, K. and Kohn, T. 2013. Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: Evidence for abiotic back-transformation. Environ. Sci. Technol. 47(13), 6746-6755.

Guerard, J.J., Chin, Y.-P., Mash, H. and Hadad, C.M. 2009. Photochemical fate of sulfadimethoxine in aquaculture waters. Environ. Sci. Technol. 43(22), 8587-8592.

Jabusch, T.W. and Tjeerdema, R.S. 2006. Photodegradation of penoxsulam. J. Agric. Food Chem. 54(16), 5958-5961.

Secrétan, P.-H., Karoui, M., Bernard, M., Ghermani, N., Safta, F., Yagoubi, N. and Do, B. 2016. Photodegradation of aqueous argatroban investigated by lc/msn: Photoproducts, transformation processes and potential implications. J. Pharm. Biomed. Anal. 131, 223-232.

 


Sulfonylurea Photohydrolysis

Scheme:

Examples:

Imazosulfuron (Rering et al. 2017)

Cinosulfuron (Vulliet et al. 2002)

triasulfuron (Vulliet et al. 2002)

iodosulfuron-methyl (Brigante et al. 2005)

thifensulfuron-methyl (Aziz et al. 2010)

Sulfosulfuron (EFSA)

 

References:

Aziz, S., Dumas, S., El Azzouzi, M., Sarakha, M. and Chovelon, J.-M. 2010. Photophysical and photochemical studies of thifensulfuron-methyl herbicide in aqueous solution. J. Photochem. Photobiol. A: Chem. 209(2), 210-218.

Brigante, M., Emmelin, C., Previtera, L., Baudot, R. and Chovelon, J.M. 2005. Abiotic degradation of iodosulfuron-methyl-ester in aqueous solution. J. Agric. Food Chem. 53(13), 5347-5352.

Rering, C., Williams, K., Hengel, M. and Tjeerdema, R. 2017. Comparison of direct and indirect photolysis in imazosulfuron photodegradation. J. Agric. Food Chem. 65(15), 3103-3108.

Vulliet, E., Emmelin, C., Grenier-Loustallot, M.F., Païssé, O. and Chovelon, J.M. 2002. Simulated sunlight-induced photodegradations of triasulfuron and cinosulfuron in aqueous solutions. J. Agric. Food Chem. 50(5), 1081-1088.

 


Sulfonylurea S-C Photohydrolysis

Scheme:

Examples:

Cinosulfuron (Vulliet et al. 2002)

Triasulfuron (Vulliet et al. 2002)

Sulfosulfuron (EFSA)

metsulfuron-methyl (Caselli 2005) (EFSA)

 

References:

Caselli, M. 2005. Light-induced degradation of metsulfuron-methyl in water. Chemosphere 59(8), 1137-1143.

Vulliet, E., Emmelin, C., Grenier-Loustallot, M.F., Païssé, O. and Chovelon, J.M. 2002. Simulated sunlight-induced photodegradations of triasulfuron and cinosulfuron in aqueous solutions. J. Agric. Food Chem. 50(5), 1081-1088.

 


Sulfonylurea S-N Photohydrolysis

Scheme:

Examples:

Sulfosulfuron (EFSA)

Imazosulfuron (Rering et al. 2017)

Cinosulfuron (Vulliet et al. 2002)

thifensulfuron-methyl (Aziz et al. 2010)

 

References:

Aziz, S., Dumas, S., El Azzouzi, M., Sarakha, M. and Chovelon, J.-M. 2010. Photophysical and photochemical studies of thifensulfuron-methyl herbicide in aqueous solution. J. Photochem. Photobiol. A: Chem. 209(2), 210-218.

Rering, C., Williams, K., Hengel, M. and Tjeerdema, R. 2017. Comparison of direct and indirect photolysis in imazosulfuron photodegradation. J. Agric. Food Chem. 65(15), 3103-3108.

Vulliet, E., Emmelin, C., Grenier-Loustallot, M.F., Païssé, O. and Chovelon, J.M. 2002. Simulated sunlight-induced photodegradations of triasulfuron and cinosulfuron in aqueous solutions. J. Agric. Food Chem. 50(5), 1081-1088.

 


Trifluoromethyl Photohydrolysis

Scheme:

Two relative reasoning exclusion rules are included (1) by specifying that reactant atoms 3 or 5 cannot be connected to a nitro group (2) by specifying that the aromatic ring cannot be connected to a halide group.

Examples:

3-trifluoromethyl-4-nitrophenol photo-product (trifluoromethylhydroquinone) (McConville et al. 2016)

Flufenamic acid (Rafqah and Sarakha 2016)

Fluoxetine (Lam et al. 2005)

Fluometuron (Halladja et al. 2007, Lam et al. 2005)

Flutolanil photo-product (Lam et al. 2005)

3-trifluoromethylphenol (Ellis and Mabury 2000)

Fluazinam (EFSA)

The product is formed by the reaction scheme along with other transformations.

Penoxsulam photo-product (EFSA)

2-chloro-5-trifluoromethylphenol photo-product (Young et al. 2008)

3-trifluoromethyl-4-nitrophenol (Ellis and Mabury 2000)

Oxyfluorfen (EFSA)

The product is formed by the reaction scheme along with other transformations.

 

References:

Ellis, D.A. and Mabury, S.A. 2000. The aqueous photolysis of tfm and related trifluoromethylphenols. An alternate source of trifluoroacetic acid in the environment. Environ. Sci. Technol. 34(4), 632-637.

Halladja, S., Amine-Khodja, A., ter Halle, A., Boulkamh, A. and Richard, C. 2007. Photolysis of fluometuron in the presence of natural water constituents. Chemosphere 69(10), 1647-1654.

Lam, M.W., Young, C.J. and Mabury, S.A. 2005. Aqueous photochemical reaction kinetics and transformations of fluoxetine. Environ. Sci. Technol. 39(2), 513-522.

McConville, M.B., Hubert, T.D. and Remucal, C.K. 2016. Direct photolysis rates and transformation pathways of the lampricides tfm and niclosamide in simulated sunlight. Environ. Sci. Technol. 50(18), 9998-10006.

Rafqah, S. and Sarakha, M. 2016. Photochemical transformation of flufenamic acid by artificial sunlight in aqueous solutions. J. Photochem. Photobiol. A: Chem. 316, 1-6.

Young, C., J., Gómez Biagi, R., F., Hurley, M., D., Wallington, T., J. and Mabury, S., A. 2008. Paint solvent to food additive: An environmental route of dehalogenation for 4chlorobenzotrifluoride. Environ. Toxicol. Chem. 27(11), 2233-2238.

 


Photohydration

Diarylethene Photohydration

Scheme:

Examples:

distyrylbiphenyl disulfonate (Kramer et al. 1996)

diaminostilbene DAS 1 (Kramer et al. 1996)

diaminostilbene DAS 2 (Kramer et al. 1996)

 

 

References:

Kramer, J.B., Canonica, S., Hoigné, J. and Kaschig, J. 1996. Degradation of fluorescent whitening agents in sunlit natural waters. Environ. Sci. Technol. 30(7), 2227-2234.

 

 


Dienone Steroid Photohydration (C5)

Scheme:

Examples:

17α-trenbolone (Baltrusaitis et al. 2016)

17β-trenbolone (Baltrusaitis et al. 2016)

Trendione (Qu et al. 2013)

Altrenogest photo-product (Wammer et al. 2016)

 

References:

Baltrusaitis, J., Patterson, E.V., O’Connor, M., Qu, S., Kolodziej, E.P. and Cwiertny, D.M. 2016. Reversible photohydration of trenbolone acetate metabolites: Mechanistic understanding of product-to-parent reversion through complementary experimental and theoretical approaches. Environ. Sci. Technol. 50(13), 6753-6761.

Qu, S., Kolodziej, E.P., Long, S.A., Gloer, J.B., Patterson, E.V., Baltrusaitis, J., Jones, G.D., Benchetler, P.V., Cole, E.A., Kimbrough, K.C., Tarnoff, M.D. and Cwiertny, D.M. 2013. Product-to-parent reversion of trenbolone: Unrecognized risks for endocrine disruption. Science 342(6156), 347.

Wammer, K.H., Anderson, K.C., Erickson, P.R., Kliegman, S., Moffatt, M.E., Berg, S.M., Heitzman, J.A., Pflug, N.C., McNeill, K., Martinovic-Weigelt, D., Abagyan, R., Cwiertny, D.M. and Kolodziej, E.P. 2016. Environmental photochemistry of altrenogest: Photoisomerization to a bioactive product with increased environmental persistence via reversible photohydration. Environ. Sci. Technol. 50(14), 7480-7488.

 


Dienone Steroid Photohydration (C9)

Scheme:

Examples:

Dienogest (Pflug et al. 2017)

 

References:

Pflug, N.C., Hankard, M.K., Berg, Stephanie M., O'Connor, M., Gloer, J.B., Kolodziej, E.P., Cwiertny, D.M. and Wammer, K.H. 2017. Environmental photochemistry of dienogest: Phototransformation to estrogenic products and increased environmental persistence via reversible photohydration. Environmental Science: Processes & Impacts 19(11), 1414-1426.

 


Enone Steroid Photohydration and Photorearrangement to Spiro

Scheme:

Examples:

Androstenedione (Young et al. 2013)

Testosterone (Vulliet et al. 2010)

 

References:

Vulliet, E., Falletta, M., Marote, P., Lomberget, T., Païssé, J.-O. and Grenier-Loustalot, M.-F. 2010. Light induced degradation of testosterone in waters. Sci. Total Environ. 408(17), 3554-3559.

Young, R.B., Latch, D.E., Mawhinney, D.B., Nguyen, T.-H., Davis, J.C.C. and Borch, T. 2013. Direct photodegradation of androstenedione and testosterone in natural sunlight: Inhibition by dissolved organic matter and reduction of endocrine disrupting potential. Environ. Sci. Technol. 47(15), 8416-8424.

 


Trienone Steroid Photohydration (C10)

Scheme:

Examples:

17β-trenbolone (Kolodziej et al. 2013)

 

References:

Kolodziej, E.P., Qu, S., Forsgren, K.L., Long, S.A., Gloer, J.B., Jones, G.D., Schlenk, D., Baltrusaitis, J. and Cwiertny, D.M. 2013. Identification and environmental implications of photo-transformation products of trenbolone acetate metabolites. Environ. Sci. Technol. 47(10), 5031-5041.

 


Trienone Steroid Photohydration (C12)

Scheme:

Examples:

17α-trenbolone (Baltrusaitis et al. 2016)

17β-trenbolone (Baltrusaitis et al. 2016)

Trendione (Qu et al. 2013)

 

References:

Baltrusaitis, J., Patterson, E.V., O’Connor, M., Qu, S., Kolodziej, E.P. and Cwiertny, D.M. 2016. Reversible photohydration of trenbolone acetate metabolites: Mechanistic understanding of product-to-parent reversion through complementary experimental and theoretical approaches. Environ. Sci. Technol. 50(13), 6753-6761.

Qu, S., Kolodziej, E.P., Long, S.A., Gloer, J.B., Patterson, E.V., Baltrusaitis, J., Jones, G.D., Benchetler, P.V., Cole, E.A., Kimbrough, K.C., Tarnoff, M.D. and Cwiertny, D.M. 2013. Product-to-parent reversion of trenbolone: Unrecognized risks for endocrine disruption. Science 342(6156), 347.

 


Photooxidation

1_2-Naphthoquinone Photohydroxylation (C4)

Scheme:

Examples:

 1-naphthol photo-product (1,2-naphthoquinone) (Brahmia and Richard 2005), carbaryl photo-product (Brahmia and Richard 2003)

 

References:

Brahmia, O. and Richard, C. 2003. Phototransformation of carbaryl in aqueous solution: Laser-flash photolysis and steady-state studies. J. Photochem. Photobiol. A: Chem. 156(1), 9-14.

Brahmia, O. and Richard, C. 2005. Photochemical transformation of 1-naphthol in aerated aqueous solution. Photochemical & Photobiological Sciences 4(6), 454-458.

 


1_4-Naphthoquinone Photohydroxylation (C5)

Scheme:

Examples:

1,4-naphthoquinone (Brahmia and Richard 2003)

 

References:

Brahmia, O. and Richard, C. 2003. Phototransformation of 1,4-naphthoquinone in aqueous solution. Photochemical & Photobiological Sciences 2(10), 1038-1043.

 


1_4-Naphthoquinone Photohydroxylation (C6)

Scheme:

Examples:

1,4-naphthoquinone (Brahmia and Richard 2003)

 

References:

Brahmia, O. and Richard, C. 2003. Phototransformation of 1,4-naphthoquinone in aqueous solution. Photochemical & Photobiological Sciences 2(10), 1038-1043.

 


1-Hydroxypyrene Photooxidation to Quinone (C1_C6)

Scheme:

Examples:

1-hydroxypyrene (Sigman et al. 1998)

 

References:

Sigman, M.E., Schuler, P.F., Ghosh, M.M. and Dabestani, R.T. 1998. Mechanism of pyrene photochemical oxidation in aqueous and surfactant solutions. Environ. Sci. Technol. 32(24), 3980-3985.


1-Hydroxypyrene Photooxidation to Quinone (C1_C8)

Scheme:

Examples:

1-hydroxypyrene (Sigman et al. 1998)

 

References:

Sigman, M.E., Schuler, P.F., Ghosh, M.M. and Dabestani, R.T. 1998. Mechanism of pyrene photochemical oxidation in aqueous and surfactant solutions. Environ. Sci. Technol. 32(24), 3980-3985.

 


1-Naphthol Photooxidation to 1_2-Benzoquinone

Scheme:

Examples:

1-naphthol (Brahmia and Richard 2005)

 

References:

Brahmia, O. and Richard, C. 2005. Photochemical transformation of 1-naphthol in aerated aqueous solution. Photochemical & Photobiological Sciences 4(6), 454-458.

 


1-Naphthol Photooxidation to 1_4-Benzoquinone

Scheme:

Examples:

1-naphthol (Brahmia and Richard 2005)

5-hydroxyl-1-naphthol (Oelgemöller et al. 2011)

 

References:

Brahmia, O. and Richard, C. 2005. Photochemical transformation of 1-naphthol in aerated aqueous solution. Photochemical & Photobiological Sciences 4(6), 454-458.

Oelgemöller, M., Mattay, J. and Görner, H. 2011. Direct photooxidation and xanthene-sensitized oxidation of naphthols: Quantum yields and mechanism. The Journal of Physical Chemistry A 115(3), 280-285.

 


1-Naphthoxy Oxidative Photocleavage to 1_4-Benzoquinone

Scheme:

Examples:

Propranolol (Sortino et al. 2002)

Carbaryl (Brahmia and Richard 2003)

 

References:

Brahmia, O. and Richard, C. 2003. Phototransformation of carbaryl in aqueous solution: Laser-flash photolysis and steady-state studies. J. Photochem. Photobiol. A: Chem. 156(1), 9-14.

Sortino, S., Petralia, S., Bosca, F. and Miranda, M.A. 2002. Irreversible photo-oxidation of propranolol triggered by self-photogenerated singlet molecular oxygen. Photochemical & Photobiological Sciences 1(2), 136-140.

 


Anthracene Photooxidation to Endoperoxide

Scheme:

Examples:

Anthracene (Sigman et al. 1991)

7,12-dimethylbenz[a]anthracene (Wood et al. 1979)

 

References:

Sigman, M.E., Zingg, S.P., Pagni, R.M. and Burns, J.H. 1991. Photochemistry of anthracene in water. Tetrahedron Lett. 32(41), 5737-5740.

Wood, J.L., Barker, C.L. and Grubbs, C.J. 1979. Photooxidation products of 7,12-dimethylbenz[a] anthracene. Chem. Biol. Interact. 26(3), 339-347.


Aromatic Methyl Photooxidation to Carboxylic Acid

Scheme:

Examples:

4-nitro butamifos (Katagi 1993)

Fenitrothion (Mikami et al. 1985) (EFSA)

 

References:

Katagi, T. 1993. Photochemistry of organophosphorus herbicide butamifos. J. Agric. Food Chem. 41(3), 496-501.

Mikami, N., Imanishi, K., Yamada, H. and Miyamoto, J. 1985. Photodegradation of fenitrothion in water and on soil surface, and its hydrolysis in water. J. Pestic. Sci. 10(2), 263-272.

 


Aromatic Nitroso Photooxidation

Scheme:

Examples:

4-nitroso sulfamethoxazole (Bonvin et al. 2013), sulfamethoxazole photo-product (Willach et al. 2018)

3-trifluoromethyl-4-nitrophenol photo-product (Carey and Fox 1981)

Butamifos photo-product (Katagi 1993)

4-chloronitrosobenzene (Miller and Crosby 1983)

 

 

References:

Bonvin, F., Omlin, J., Rutler, R., Schweizer, W.B., Alaimo, P.J., Strathmann, T.J., McNeill, K. and Kohn, T. 2013. Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: Evidence for abiotic back-transformation. Environ. Sci. Technol. 47(13), 6746-6755.

Carey, J.H. and Fox, M.E. 1981. Photodegradation of the lampricide 3-trifluoromethyl-4-nitrophenol (tfm) 1. Pathway of the direct photolysis in solution. J. Great Lakes Res. 7(3), 234-241.

Katagi, T. 1993. Photochemistry of organophosphorus herbicide butamifos. J. Agric. Food Chem. 41(3), 496-501.

Miller, G.C. and Crosby, D.G. 1983. Photooxidation of 4-chloroaniline and n-(4-chlorophenyl)-benzenesulfonamide to nitroso- and nitro-products. Chemosphere 12(9), 1217-1227.

Willach, S., Lutze, H.V., Eckey, K., Löppenberg, K., Lüling, M., Wolbert, J.-B., Kujawinski, D.M., Jochmann, M.A., Karst, U. and Schmidt, T.C. 2018. Direct photolysis of sulfamethoxazole using various irradiation sources and wavelength ranges—insights from degradation product analysis and compound-specific stable isotope analysis. Environ. Sci. Technol. 52(3), 1225-1233.

 


Aromatic Sulfoxide Photooxidation

Scheme:

Examples:

Fenthion sulfoxide (Hirahara et al. 2003)

Sulprofos photo-product (Ivie and Bull 1976)

Fenamiphos photo-product (EFSA)

The product is formed by the reaction scheme along with other transformations.

 

References:

Hirahara, Y., Ueno, H. and Nakamuro, K. 2003. Aqueous photodegradation of fenthion by ultraviolet b irradiation: Contribution of singlet oxygen in photodegradation and photochemical hydrolysis. Water Res. 37(2), 468-476.

Ivie, G.W. and Bull, D.L. 1976. Photodegradation of o-ethyl o-[4-(methylthio)phenyl] s-propyl phosphorodithioate (bay ntn 9306). J. Agric. Food Chem. 24(5), 1053-1057.

 


Aromatic Thioether Photooxidation

Scheme:

Examples:

Fenthion (Torrisi and Sortino 2004)

Thioanisole (Huang and Mabury 2000)

Methiocarb (EFSA)

Fenamiphos (EFSA)

 

References:

Huang, J. and Mabury, S.A. 2000. The role of carbonate radical in limiting the persistence of sulfur-containing chemicals in sunlit natural waters. Chemosphere 41(11), 1775-1782.

Torrisi, S. and Sortino, S. 2004. New insights into the photoreactivity of the organophosphorus pesticide fenthion:  A σ aryl cation as a key intermediate in the photodecomposition. J. Agric. Food Chem. 52(19), 5943-5949.

 


Benzaldehyde Photooxidation to Carboxylic Acid

Scheme:

An exclusion rule is included to exclude reactants susceptible to “2-Nitrobenzaldehyde Photorearrangement” by specifying that there is no nitro functional group ortho to the benzaldehyde.

Examples:

Permethrin photo-product (Holmstead et al. 1978)

Methotrexate photo-product (Chatterji and Gallelli 1978)

Diclofenac photo-product (Agüera et al. 2005)

4-chlorobenzaldehyde (Ware et al. 1980)

1-naphthaldehyde (Crosby and Tang 1969)

 

References:

Agüera, A., Pérez Estrada, L.A., Ferrer, I., Thurman, E.M., Malato, S. and Fernández-Alba, A.R. 2005. Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. J. Mass Spectrom. 40(7), 908-915.

Chatterji, D.C. and Gallelli, J.F. 1978. Thermal and photolytic decomposition of methotrexate in aqueous solutions. J. Pharm. Sci. 67(4), 526-531.

Crosby, D.G. and Tang, C.-S. 1969. Photodecomposition of 1-naphthaleneacetic acid. J. Agric. Food Chem. 17(6), 1291-1293.

Holmstead, R.L., Casida, J.E., Ruzo, L.O. and Fullmer, D.G. 1978. Pyrethroid photodecomposition: Permethrin. J. Agric. Food Chem. 26(3), 590-595.

Ware, G.W., Crosby, D.G. and Giles, J.W. 1980. Photodecomposition of dda. Arch. Environ. Contam. Toxicol. 9(2), 135-146.

 


Benzyl Thio Photooxidation to Sulfoxide

Scheme:

A reactivity rule is included to ensure that the formed product cannot be triggered iteratively by this reaction scheme by specifying that reactant atom 3 needs to have less than 3 connections (including H).  An exclusion rule is included by specifying that reactant atom 2 is not a carbonyl carbon.

Examples:

Ethiofencarb (Vialaton and Richard 2002)

Drepamon (Draper and Crosby 1984)

 

References:

Draper, W.M. and Crosby, D.G. 1984. Photochemistry and volatility of drepamon in water. J. Agric. Food Chem. 32(4), 728-733.

Vialaton, D. and Richard, C. 2002. Phototransformation of aromatic pollutants in solar light: Photolysis versus photosensitized reactions under natural water conditions. Aquat. Sci. 64(2), 207-215.

 


beta-Triketone alpha Photohydroxylation (Dienol)

Scheme:

Examples:

myrigalone A (Khaled et al. 2019)

 

References:

Khaled, A., Sleiman, M., Darras, E., Trivella, A., Bertrand, C., Inguimbert, N., Goupil, P. and Richard, C. 2019. Photodegradation of myrigalone a, an allelochemical from myrica gale: Photoproducts and effect of terpenes. J. Agric. Food Chem. 67(26), 7258-7265.


beta-Triketone alpha Photohydroxylation (Keto)

Scheme:

Examples:

Isoleptospermone (Trivella et al. 2015)

Grandiflorone (Trivella et al. 2015)

 

References:

Trivella, A., Stawinoga, M., Dayan, F.E., Cantrell, C.L., Mazellier, P. and Richard, C. 2015. Photolysis of natural β-triketonic herbicides in water. Water Res. 78, 28-36.

 


beta-Triketone Photohydroxylation (Enol)

Scheme:

Examples:

myrigalone A (Khaled et al. 2019)

 

References:

Khaled, A., Sleiman, M., Darras, E., Trivella, A., Bertrand, C., Inguimbert, N., Goupil, P. and Richard, C. 2019. Photodegradation of myrigalone a, an allelochemical from myrica gale: Photoproducts and effect of terpenes. J. Agric. Food Chem. 67(26), 7258-7265.

 


beta-Triketone Photohydroxylation (Keto)

Scheme:

Examples:

Leptospermone (Trivella et al. 2015)

Grandiflorone (Trivella et al. 2015)

 

References:

Trivella, A., Stawinoga, M., Dayan, F.E., Cantrell, C.L., Mazellier, P. and Richard, C. 2015. Photolysis of natural β-triketonic herbicides in water. Water Res. 78, 28-36.

 


Carbamazepine Photoepoxidation

Scheme:

Examples:

Carbamazepine (Lam and Mabury 2005)

 

References:

Lam, M.W. and Mabury, S.A. 2005. Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. Aquat. Sci. 67(2), 177-188.

 


Diarylethene Photooxidation

Scheme:

A selectivity rule is included to avoid duplication of products for symmetric reactant by specifying that reactant atom 3 needs to be the more sterically hindered atom.

Examples:

distyrylbiphenyl disulfonate (Kramer et al. 1996)

diaminostilbene DAS 1 (Kramer et al. 1996)

Tamoxifen (DellaGreca et al. 2007)

 

References:

DellaGreca, M., Iesce, M.R., Isidori, M., Nardelli, A., Previtera, L. and Rubino, M. 2007. Phototransformation products of tamoxifen by sunlight in water. Toxicity of the drug and its derivatives on aquatic organisms. Chemosphere 67(10), 1933-1939.

Kramer, J.B., Canonica, S., Hoigné, J. and Kaschig, J. 1996. Degradation of fluorescent whitening agents in sunlit natural waters. Environ. Sci. Technol. 30(7), 2227-2234.

 


Dihydrooxathiine Anilide Photooxidation to Sulfoxide

Scheme:

Examples:

Carboxin (DellaGreca et al. 2004) (EFSA)

 

References:

DellaGreca, M., Iesce, M.R., Cermola, F., Rubino, M. and Isidori, M. 2004. Phototransformation of carboxin in water. Toxicity of the pesticide and its sulfoxide to aquatic organisms. J. Agric. Food Chem. 52(20), 6228-6232.

 


Dihydropyridine Photooxidation to Pyridine

Scheme:

Examples:

Amlodipine (DellaGreca et al. 2007)

 

References:

DellaGreca, M., Iesce, M.R., Isidori, M., Montanaro, S., Previtera, L. and Rubino, M. 2007. Phototransformation of amlodipine in aqueous solution: Toxicity of the drug and its photoproduct on aquatic organisms. International Journal of Photoenergy 2007.


Octahydrophenanthrene Benzyl Photohydroxylation

Scheme:

Examples:

17β-estradiol (Mazellier et al. 2008)

17α-ethinylestradiol (Mazellier et al. 2008)

dehydroabietic acid photo-product (Corin et al. 2000)

 

References:

Corin, N.S., Backlund, P.H. and Kulovaara, M.A.M. 2000. Photolysis of the resin acid dehydroabietic acid in water. Environ. Sci. Technol. 34(11), 2231-2236.

Mazellier, P., Méité, L. and Laat, J.D. 2008. Photodegradation of the steroid hormones 17β-estradiol (e2) and 17α-ethinylestradiol (ee2) in dilute aqueous solution. Chemosphere 73(8), 1216-1223.

 


Octahydrophenanthrene Benzyl Photooxidation to Ketone

Scheme:

Examples:

17β-estradiol (Mazellier et al. 2008)

17α-ethinylestradiol (Mazellier et al. 2008)

dehydroabietic acid photo-product (Corin et al. 2000)

 

References:

Corin, N.S., Backlund, P.H. and Kulovaara, M.A.M. 2000. Photolysis of the resin acid dehydroabietic acid in water. Environ. Sci. Technol. 34(11), 2231-2236.

Mazellier, P., Méité, L. and Laat, J.D. 2008. Photodegradation of the steroid hormones 17β-estradiol (e2) and 17α-ethinylestradiol (ee2) in dilute aqueous solution. Chemosphere 73(8), 1216-1223.

 


Organothiophosphorus Ester Photooxidation to Oxon

Scheme:

Examples:

Parathion-methyl (Weber et al. 2009)

Fenitrothion (Weber et al. 2009) (EFSA)

4-nitro butamifos (Katagi 1993)

Parathion (Mansour et al. 1983)

Isofenfos (Zamy et al. 2004)

 

References:

Katagi, T. 1993. Photochemistry of organophosphorus herbicide butamifos. J. Agric. Food Chem. 41(3), 496-501.

Mansour, M., Thaller, S. and Korte, F. 1983. Action of sunlight on parathion. Bull. Environ. Contam. Toxicol. 30(1), 358-364.

Weber, J., Kurková, R., Klánová, J., Klán, P. and Halsall, C.J. 2009. Photolytic degradation of methyl-parathion and fenitrothion in ice and water: Implications for cold environments. Environ. Pollut. 157(12), 3308-3313.

Zamy, C., Mazellier, P. and Legube, B. 2004. Phototransformation of selected organophosphorus pesticides in dilute aqueous solutions. Water Res. 38(9), 2305-2314.

 


Phenylurea N-methyl Photooxidation to N-formyl

Scheme:

Examples:

Diuron (Tanaka et al. 1986)

Monuron (Crosby and Tang 1969)

Monuron photo-product (Crosby and Tang 1969)

 

References:

Crosby, D.G. and Tang, C.S. 1969. Photodecomposition of 3-(p-chlorophenyl)-1,1-dimethylurea (monuron). J. Agric. Food Chem. 17(5), 1041-1044.

Tanaka, F.S., Hoffer, B.L. and Wien, R.G. 1986. Photolysis of 3(3,4dichlorophenyl)1, 1 dimethylurea (diuron) in dilute aqueous solution. Toxicol. Environ. Chem. 11(4), 261-269.

 


Pyrene Aromatic Photohydroxylation

Scheme:

An exclusion rule is included to exclude the reaction of 1-hydroxypyrene by specifying that reactant atom 1 is not part of 1-hydroxypyrene.

Examples:

Pyrene (Sigman et al. 1998)

The product is formed by the reaction scheme along with other transformations.

 

References:

Sigman, M.E., Schuler, P.F., Ghosh, M.M. and Dabestani, R.T. 1998. Mechanism of pyrene photochemical oxidation in aqueous and surfactant solutions. Environ. Sci. Technol. 32(24), 3980-3985.

 


s-Triazine Side Chain N-alkyl Photooxidation to Carbonyl

Scheme:

Examples:

Atrazine (Torrents et al. 1997)

Pirimicarb (Pirisi et al. 1996) (EFSA)

 

References:

Pirisi, F.M., Cabras, P., Garau, V.L., Melis, M. and Secchi, E. 1996. Photodegradation of pesticides. Photolysis rates and half-life of pirimicarb and its metabolites in reactions in water and in solid phase. J. Agric. Food Chem. 44(8), 2417-2422.

Torrents, A., Anderson, B.G., Bilboulian, S., Johnson, W.E. and Hapeman, C.J. 1997. Atrazine photolysis:  Mechanistic investigations of direct and nitrate-mediated hydroxy radical processes and the influence of dissolved organic carbon from the chesapeake bay. Environ. Sci. Technol. 31(5), 1476-1482.

 


s-Triazine Side Chain N-isopropyl Photooxidation to Ketone

Scheme:

An exclusion rule is included to constrain that the cleaved bond is not part of a ring.

Examples:

Atrazine (Torrents et al. 1997)

 

References:

Torrents, A., Anderson, B.G., Bilboulian, S., Johnson, W.E. and Hapeman, C.J. 1997. Atrazine photolysis:  Mechanistic investigations of direct and nitrate-mediated hydroxy radical processes and the influence of dissolved organic carbon from the chesapeake bay. Environ. Sci. Technol. 31(5), 1476-1482.

 


Trienone Steroid Photooxidation to Dialdehyde

Scheme:

Examples:

17β-trenbolone (Kolodziej et al. 2013)

 

References:

Kolodziej, E.P., Qu, S., Forsgren, K.L., Long, S.A., Gloer, J.B., Jones, G.D., Schlenk, D., Baltrusaitis, J. and Cwiertny, D.M. 2013. Identification and environmental implications of photo-transformation products of trenbolone acetate metabolites. Environ. Sci. Technol. 47(10), 5031-5041.

 


Trifluoroacetic Acid Photoformation

Scheme:

Examples:

3-trifluoromethyl-4-nitrophenol photo-product (trifluoromethyl hydroquinone), 4-amino-3-trifluoromethylphenol photo-product (Ellis and Mabury 2000, McConville et al. 2016)

 

References:

Ellis, D.A. and Mabury, S.A. 2000. The aqueous photolysis of tfm and related trifluoromethylphenols. An alternate source of trifluoroacetic acid in the environment. Environ. Sci. Technol. 34(4), 632-637.

McConville, M.B., Hubert, T.D. and Remucal, C.K. 2016. Direct photolysis rates and transformation pathways of the lampricides tfm and niclosamide in simulated sunlight. Environ. Sci. Technol. 50(18), 9998-10006.

 


Photoreduction

Aromatic Photohydrodehalogenation

Scheme:

An exclusion rule is added to differentiate this scheme from “Fluoroquinolone Photohydrodefluorination” by specifying that reactant atom 1 is not part of a quinolone functional group.

A relative reasoning exclusion rule is included by specifying that reactant atom 1 is not connected to a benzoylphenylurea functional group.

Examples:

fipronil photo-product (Ngim et al. 2000)

BDE-47 (Wei-Haas 2015)

Profenofos (Zamy et al. 2004)

Diclofenac photo-product (Moore et al. 1990)

Triclosan (Kliegman et al. 2013)

Iopromide (Pérez et al. 2009)

Proquinazid (EFSA)

 

References:

Kliegman, S., Eustis, S.N., Arnold, W.A. and McNeill, K. 2013. Experimental and theoretical insights into the involvement of radicals in triclosan phototransformation. Environ. Sci. Technol. 47(13), 6756-6763.

Moore, D.E., Roberts-Thomson, S., Zhen, D. and Duke, C.C. 1990. Photochemical studies on the antinelammatory drug diclofenac. Photochem. Photobiol. 52(4), 685-690.

Ngim, K.K., Mabury, S.A. and Crosby, D.G. 2000. Elucidation of fipronil photodegradation pathways. J. Agric. Food Chem. 48(10), 4661-4665.

Pérez, S., Eichhorn, P., Ceballos, V. and Barceló, D. 2009. Elucidation of phototransformation reactions of the x-ray contrast medium iopromide under simulated solar radiation using uplc-esi-qqtof-ms. J. Mass Spectrom. 44(9), 1308-1317.

Wei-Haas, M.L. 2015. The influence of dissolved organic matter on the fate of polybrominated diphenyl ethers (pbdes) in the environment, The Ohio State University.

Zamy, C., Mazellier, P. and Legube, B. 2004. Phototransformation of selected organophosphorus pesticides in dilute aqueous solutions. Water Res. 38(9), 2305-2314.

 


Dinitroaniline Nitro Photoreduction

Scheme:

Examples:

Trifluralin photo-product (Leitis and Crosby 1974)

Pendimethalin (Dureja and Walia 1989)

 

Fluazinam (EFSA)

Flumetraline (EFSA)

 

 

References:

Dureja, P. and Walia, S. 1989. Photodecomposition of pendimethalin. Pestic. Sci. 25(2), 105-114.

Leitis, E. and Crosby, D.G. 1974. Photodecomposition of trifluralin. J. Agric. Food Chem. 22(5), 842-848.

 


Fluoroquinolone Photohydrodefluorination

Scheme:

 

An exclusion rules are included to exclude halogen substitution at reactant atom 8.

Examples:

Enrofloxacin (Wammer et al. 2013)

The product is formed by the reaction scheme along with other transformations.

Ciprofloxacin (Baena-Nogueras et al. 2017)

Balofloxacin photo-product (Ge et al. 2018)

 

References:

Baena-Nogueras, R.M., González-Mazo, E. and Lara-Martín, P.A. 2017. Photolysis of antibiotics under simulated sunlight irradiation: Identification of photoproducts by high-resolution mass spectrometry. Environ. Sci. Technol. 51(6), 3148-3156.

Ge, L., Halsall, C., Chen, C.-E., Zhang, P., Dong, Q. and Yao, Z. 2018. Exploring the aquatic photodegradation of two ionisable fluoroquinolone antibiotics – gatifloxacin and balofloxacin: Degradation kinetics, photobyproducts and risk to the aquatic environment. Sci. Total Environ. 633, 1192-1197.

Wammer, K.H., Korte, A.R., Lundeen, R.A., Sundberg, J.E., McNeill, K. and Arnold, W.A. 2013. Direct photochemistry of three fluoroquinolone antibacterials: Norfloxacin, ofloxacin, and enrofloxacin. Water Res. 47(1), 439-448.

 


Secondary Dark Reaction

12-OH Steroid Dehydration to Trienone

Scheme:

Examples:

17α-trenbolone photo-product (12-OH-17α-trenbolone) (Baltrusaitis et al. 2016)

17β-trenbolone photo-product (12-OH-17β-trenbolone) (Baltrusaitis et al. 2016)

Trendione photo-product (12-OH-trendione) (Qu et al. 2013)

 

References:

Baltrusaitis, J., Patterson, E.V., O’Connor, M., Qu, S., Kolodziej, E.P. and Cwiertny, D.M. 2016. Reversible photohydration of trenbolone acetate metabolites: Mechanistic understanding of product-to-parent reversion through complementary experimental and theoretical approaches. Environ. Sci. Technol. 50(13), 6753-6761.

Qu, S., Kolodziej, E.P., Long, S.A., Gloer, J.B., Patterson, E.V., Baltrusaitis, J., Jones, G.D., Benchetler, P.V., Cole, E.A., Kimbrough, K.C., Tarnoff, M.D. and Cwiertny, D.M. 2013. Product-to-parent reversion of trenbolone: Unrecognized risks for endocrine disruption. Science 342(6156), 347.

 


5-OH Steroid Dehydration to Dienone

Scheme:

Examples:

17α-trenbolone photo-product (5-OH-17α-trenbolone) (Baltrusaitis et al. 2016)

17β-trenbolone photo-product (5-OH-17β-trenbolone) (Baltrusaitis et al. 2016)

Trendione photo-product (5-OH-trendione) (Qu et al. 2013)

Altrenogest photo-product (5-OH-altrenogest) (Wammer et al. 2016)

 

References:

Baltrusaitis, J., Patterson, E.V., O’Connor, M., Qu, S., Kolodziej, E.P. and Cwiertny, D.M. 2016. Reversible photohydration of trenbolone acetate metabolites: Mechanistic understanding of product-to-parent reversion through complementary experimental and theoretical approaches. Environ. Sci. Technol. 50(13), 6753-6761.

Qu, S., Kolodziej, E.P., Long, S.A., Gloer, J.B., Patterson, E.V., Baltrusaitis, J., Jones, G.D., Benchetler, P.V., Cole, E.A., Kimbrough, K.C., Tarnoff, M.D. and Cwiertny, D.M. 2013. Product-to-parent reversion of trenbolone: Unrecognized risks for endocrine disruption. Science 342(6156), 347.

Wammer, K.H., Anderson, K.C., Erickson, P.R., Kliegman, S., Moffatt, M.E., Berg, S.M., Heitzman, J.A., Pflug, N.C., McNeill, K., Martinovic-Weigelt, D., Abagyan, R., Cwiertny, D.M. and Kolodziej, E.P. 2016. Environmental photochemistry of altrenogest: Photoisomerization to a bioactive product with increased environmental persistence via reversible photohydration. Environ. Sci. Technol. 50(14), 7480-7488.

 


Aldehyde Oxidation to Carboxylic Acid

Scheme:

Examples:

N-nitrosodimethylamine (Plumlee and Reinhard 2007)

The product is formed by the reaction scheme along with other transformations.

Metofluthrin photo-product (Nishiyama et al. 2010)

Cyphenothrin photo-product (Suzuki et al. 2017)

 

References:

Nishiyama, M., Suzuki, Y. and Katagi, T. 2010. Hydrolysis and photolysis of insecticide metofluthrin in water. J. Pestic. Sci. 35(4), 447-455.

Plumlee, M.H. and Reinhard, M. 2007. Photochemical attenuation of n-nitrosodimethylamine (ndma) and other nitrosamines in surface water. Environ. Sci. Technol. 41(17), 6170-6176.

Suzuki, Y., Yoshida, M., Sugano, T., Shibata, A., Kodaka, R., Fujisawa, T. and Katagi, T. 2017. Behavior of cyphenothrin in aquatic environment. J. Pestic. Sci. 42(2), 17-24.

 


C-NCO Hydrolysis

Scheme:

Two exclusion rules are included (1) to prevent the exact chemical of N-[(nitroamino)methyl]formamide for reacting and (2) to constrain that the reaction scheme does not happen to aromatic compounds.

Examples:

hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) photo-product (Hawari et al. 2002)

The product is formed by the reaction scheme along with other transformations.

 

References:

Hawari, J., Halasz, A., Groom, C., Deschamps, S., Paquet, L., Beaulieu, C. and Corriveau, A. 2002. Photodegradation of rdx in aqueous solution:  A mechanistic probe for biodegradation with rhodococcus sp. Environ. Sci. Technol. 36(23), 5117-5123.

 


C-NNO2 Hydrolysis

Scheme:

Two exclusion rules are included (1) to exclude the exact chemical of N-[(nitroamino)methyl]formamide and (2) to constrain that the reaction scheme does not happen to aromatic compounds.

Examples:

hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) photo-product (Hawari et al. 2002)

 

References:

Hawari, J., Halasz, A., Groom, C., Deschamps, S., Paquet, L., Beaulieu, C. and Corriveau, A. 2002. Photodegradation of rdx in aqueous solution:  A mechanistic probe for biodegradation with rhodococcus sp. Environ. Sci. Technol. 36(23), 5117-5123.

 


Dehydration of Geminal Diols

Scheme:

This scheme is a duplicate of the same reaction scheme in the CTS abiotic hydrolysis library. The reaction is actually an equilibrium between a geminal diol and a carbonyl compound, where the carbonyl is usually the dominant form except for simple aldehydes (Bell and Evans 1966, Tebes-Stevens et al. 2017). Although the dominant form for simple aldehydes (e.g., formaldehyde) is usually the diol, this reaction is still allowed for simple aldehydes because the equilibrium is strongly dependent on the solution chemistry and some analytical techniques do not differentiate between the two forms.

Examples:

hexahydro-1,3,5-trinitro-1,3,5-triazine photo-product (Hawari et al. 2002)

The product is formed by the reaction scheme along with other transformations.

 

References:

Bell, R.P. and Evans, P.G. 1966. Kinetics of the dehydration of methylene glycol in aqueous solution. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 291(1426), 297-323.

Hawari, J., Halasz, A., Groom, C., Deschamps, S., Paquet, L., Beaulieu, C. and Corriveau, A. 2002. Photodegradation of rdx in aqueous solution:  A mechanistic probe for biodegradation with rhodococcus sp. Environ. Sci. Technol. 36(23), 5117-5123.

Tebes-Stevens, C., Patel, J.M., Jones, W.J. and Weber, E.J. 2017. Prediction of hydrolysis products of organic chemicals under environmental ph conditions. Environ. Sci. Technol. 51(9), 5008-5016.

 


Hydroxy Enal Tautomerization

Scheme:

Examples:

Furaltadone photo-product, Furazolidone photo-product, Nitrofurantoin photo-product (5-hydroxyfuran-2-carbaldehyde) (Edhlund et al. 2006)

 

References:

Edhlund, B.L., Arnold, W.A. and McNeill, K. 2006. Aquatic photochemistry of nitrofuran antibiotics. Environ. Sci. Technol. 40(17), 5422-5427.

 


Nitro Amidine Hydrolysis

Scheme:

Examples:

hexahydro-1,3,5-trinitro-1,3,5-triazine photo-product (Hawari et al. 2002)

 

References:

Hawari, J., Halasz, A., Groom, C., Deschamps, S., Paquet, L., Beaulieu, C. and Corriveau, A. 2002. Photodegradation of rdx in aqueous solution:  A mechanistic probe for biodegradation with rhodococcus sp. Environ. Sci. Technol. 36(23), 5117-5123.

 

 


Rank Assignment

Rank Levels

rank

equivalent mid-point half-life

range of geometric mean of t1/2,pr for rank assignment

7

17 minutes

< 30 minutes

6

2.0 hours

30 minutes – 200 minutes

5

14 hours

200 minuts - 1 day

4

4.0 days

1 day - 1 week

3

0.93 month

1 week - 2 months

2

0.54 year

2 months - 1 year

1

3.8 year

> 1 year

 

Rank of Individual Reaction Schemes

#

reaction scheme name

rank

 

Photorearrangement

 

1

1-Naphthoxy Photorearrangement (C2)

4

2

1-Naphthoxy Photorearrangement (C4)

4

3

2-Naphthoxy Photorearrangement (C1)

4

4

2-Nitrobenzaldehyde Photorearrangement

4

5

Benzyl Phenyl Ether Photorearrangement (o)

3

6

Benzyl Phenyl Ether Photorearrangement (p)

3

7

Enone Steroid Photorearrangement to Cyclopentenone

4

8

Enone Steroid Photorearrangement to Lumiketone

4

9

O-aryl Carbamate Photorearrangement (o)

4

10

O-aryl Carbamate Photorearrangement (p)

4

11

Organothiophosphorus Ester Photochemical Oxygen Transfer

4

12

Organothiophosphorus Ester Photorearrangement

4

13

Phenoxyphenol Dehalogenative Photorearrangement

4

 

Photodissociation

 

14

Aromatic Ketone Norrish II Photocleavage (C1_C4)

4

15

Aminobenzophenone Photochemical N-dealkylation

4

16

Benzyl Photodeamination to Alcohol

3

17

Benzyl Photodeamination to Carbonyl

3

18

Benzyl Thiocarbamate Photocleavage to Carbonyl

2

19

Cyclohexanedione Oxime N-O Photocleavage

4

20

Diazepam Ring Photocleavage

3

21

Dihydrophenanthrene Benzyl Photodealkylation

4

22

Dihydrophenanthrene Benzyl Oxidative Photodealkylation

4

23

Dinitroaniline Photochemical N-dealkylation

4

24

Fluoroquinolone Ethylenediamine Photochemical N-dealkylation

7

25

Fluoroquinolone Photochemical N-dealkylation

6

26

Fluoroquinolone Piperazine Photochemical Bis N-dealkylation

7

27

Imidazolinone Ring Photocleavage to Aldehyde

4

28

Imidazolinone Ring Photocleavage to Amide

4

29

Imidazolinone Ring Photocleavage to Amidine

4

30

Imidazolinone Ring Photocleavage to Carboxylic Acid

4

31

Nitroenamine Photocleavage

4

32

Nitroenamine Photocleavage to Carbonyl

4

33

Nitrosamine N-C Photocleavage

4

34

p-Aminobenzoic Acid Photochemical N-dealkylation

4

35

Phenoxyphenol Ether Photocleavage

4

36

Phenylurea Photochemical N-dealkylation

1

37

Phenylurea Photochemical N-demethoxylation

1

38

Phenylurea N-formyl Photocleavage

4

39

Pyridinium Photochemical N-dealkylation

4

40

s-Triazine Side Chain Photochemical N-dealkylation

3

41

Sulfonamide N-C Photocleavage (6-5)

4

42

Tetracycline Photochemical N-dealkylation

4

 

Photoelimination

 

43

1_2_4-Triazine-5-one Photochemical N-deamination

4

44

Aromatic Acetic Acid Photodecarboxylation

4

45

Aromatic Acetic Acid Photodecarboxylation to Alcohol

4

46

Aromatic Acetic Acid Photodecarboxylation to Carbonyl

4

47

Aromatic Carboxylic Acid Photodecarboxylation

4

48

Aromatic Carboxylic Acid Photodecarboxylation to Alcohol

4

49

Benzotriazole Photodenitrogenation

4

50

Benzotriazole Photodenitrogenation to Phenol (o)

4

51

Cephem Photodecarboxylation

4

52

Cyanohydrin Cyano Photoelimination to Aldehyde

4

53

Fipronil Sulfoxide Photoextrusion

4

54

Imidazolinone Amide Photoelimination

4

55

Imidazolinone Photodecarbonylation

4

56

Nitroguanidine Photochemical N-denitration

4

57

Nitrosamine N-N Photocleavage

4

58

Phenoxyacetic Acid Photodecarboxylation

4

59

Phenoxyacetic Acid Photodecarboxylation to Carbonyl

4

60

Pyrrolinone Photodecarbonylation

4

61

RDX Photochemical N-denitration to Imine

4

62

Sulfonamide SO2 Extrusion Photorearrangement (6-6)

4

 

Photocyclization

 

63

Acetanilide Dehalogenative Photocyclization to Pyrrolinone

4

64

Acetanilide O-dealkyl Dehalogenative Photocyclization to Morpholinone

4

65

Altrenogest Photocycloaddition

7

66

Aminobenzophenone Photocyclization to Acridinone

4

67

Anthranilic Diamide Dehalogenative Photocyclization to Oxazine

4

68

Aromatic Ketone Norrish II Photocyclization (C1_C4)

4

69

beta-Triketone Dehalogenative Photocyclization to Pyran

4

70

Diarylethene Photocyclization to Phenanthrene

4

71

Diarylethene Photocyclization to Phenanthrene (E isomer)

4

72

Dinitroaniline Photocyclization to Benzimidazole (NOHOH)

4

73

Dinitroaniline Photocyclization to Benzimidazole (NOHOH to NO)

7

74

Dinitroaniline Photocyclization to Benzimidazole (NO to N)

4

75

Diphenylamine Photocyclization to Carbazole

4

76

Diphenylamine Dehalogenative Photocyclization to Carbazole

4

77

Fluoroquinolone Defluorinative Photocyclization

7

78

Lamotrigine Photocyclization to Carbazole

4

79

Lamotrigine Dehalogenative Photocyclization to Carbazole

4

80

o-Vinylbiphenyl Photocyclization to Dihydrophenanthrene

5

81

Phenoxyphenol Dehalogenative Photocyclization to Dioxin

4

 

Photochemical Ring Contraction

 

82

Zepine Photochemical Ring Contraction to Acridine

4

 

Photohydrolysis

 

83

Aromatic Amine Photohydrolysis

4

84

Aromatic Carbamate Photohydrolysis

4

85

Aromatic Ether Photohydrolysis

3

86

Aromatic Halide Photohydrolysis

3

87

Aromatic Nitro Photohydrolysis

3

88

Aromatic Sulfonate Photohydrolysis

4

89

Benzoylphenylurea Amide Photohydrolysis

4

90

Benzoylphenylurea Urea Photohydrolysis

4

91

beta-Triketone alpha Photocleavage to Carboxylic Acid

4

92

Diphenyl Ether Photohydrolysis

4

93

Fluoroquinolone Fluoride Photohydrolysis

7

94

N-aryl Amide Photohydrolysis

3

95

Nitrofuran Imine Photohydrolysis

4

96

Nitroguanidine Imine Photohydrolysis

4

97

Nitroguanidine Nitro Photohydrolysis

4

98

Organophosphorus Ester Photohydrolysis

3

99

Pyrethroid Carboxylic Acid Ester Photohydrolysis

4

100

Pyrrolinone Halide Photohydrolysis

4

101

Sulfonamide Photohydrolysis

4

102

Sulfonamide S-C Photohydrolysis

3

103

Sulfonylurea Photohydrolysis

4

104

Sulfonylurea S-C Photohydrolysis

4

105

Sulfonylurea S-N Photohydrolysis

4

106

Trifluoromethyl Photohydrolysis

4

 

Photohydration

 

107

Diarylethene Photohydration

5

108

Dienone Steroid Photohydration (C5)

4

109

Dienone Steroid Photohydration (C9)

4

110

Enone Steroid Photohydration and Photorearrangement to Spiro

4

111

Trienone Steroid Photohydration (C10)

4

112

Trienone Steroid Photohydration (C12)

4

 

Photooxidation

 

113

1_2-Naphthoquinone Photohydroxylation (C4)

4

114

1_4-Naphthoquinone Photohydroxylation (C5)

4

115

1_4-Naphthoquinone Photohydroxylation (C6)

4

116

1-Hydroxypyrene Photooxidation to Quinone (C1_C6)

4

117

1-Hydroxypyrene Photooxidation to Quinone (C1_C8)

4

118

1-Naphthol Photooxidation to 1_2-Benzoquinone

4

119

1-Naphthol Photooxidation to 1_4-Benzoquinone

4

120

1-Naphthoxy Oxidative Photocleavage to 1_4-Benzoquinone

4

121

Anthracene Photooxidation to Endoperoxide

4

122

Aromatic Methyl Photooxidation to Carboxylic Acid

4

123

Aromatic Nitroso Photooxidation

4

124

Aromatic Sulfoxide Photooxidation

4

125

Aromatic Thioether Photooxidation

4

126

Benzaldehyde Photooxidation to Carboxylic Acid

4

127

Benzyl Thio Photooxidation to Sulfoxide

2

128

beta-Triketone alpha Photohydroxylation (Dienol)

4

129

beta-Triketone alpha Photohydroxylation (Keto)

4

130

beta-Triketone Photohydroxylation (Enol)

4

131

beta-Triketone Photohydroxylation (Keto)

4

132

Carbamazepine Photoepoxidation

4

133

Diarylethene Photooxidation

4

134

Dihydrooxathiine Anilide Photooxidation to Sulfoxide

4

135

Dihydropyridine Photooxidation to Pyridine

4

136

Octahydrophenanthrene Benzyl Photohydroxylation

4

137

Octahydrophenanthrene Benzyl Photooxidation to Ketone

4

138

Organothiophosphorus Ester Photooxidation to Oxon

3

139

Phenylurea N-methyl Photooxidation to N-formyl

1

140

Pyrene Aromatic Photohydroxylation

4

141

s-Triazine Side Chain N-alkyl Photooxidation to Carbonyl

3

142

s-Triazine Side Chain N-isopropyl Photooxidation to Ketone

2

143

Trienone Steroid Photooxidation to Dialdehyde

4

144

Trifluoroacetic Acid Photoformation

4

 

Photoreduction

 

145

Aromatic Photohydrodehalogenation

2

146

Dinitroaniline Nitro Photoreduction

4

147

Fluoroquinolone Photohydrodefluorination

7

 

Secondary Dark Reaction

 

148

12-OH Steroid Dehydration to Trienone

4

149

5-OH Steroid Dehydration to Dienone

4

150

Aldehyde Oxidation to Carboxylic Acid

4

151

C-NCO Hydrolysis

4

152

C-NNO2 Hydrolysis

4

153

Dehydration of Geminal Diols

7

154

Hydroxy Enal Tautomerization

4

155

Nitro Amidine Hydrolysis

4